login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143652
(0, 1, 2, 3, 2^2, 5, 2*3, 7, 2^3, 3^2, 2*5, 11, 2^2*3, 13, ...) becomes (0^(1+2), 3^(2+2), 5^(2+3), 7^(2+3), 3^(2+2), 5^(11+2), 2^(3+13), ...).
1
0, 81, 3125, 16807, 81, 1220703125, 65536, 1024, 15625, 1419857, 2097152, 256, 96889010407, 6436343, 2187, 65536, 81, 157775382034845806615042743, 150094635296999121, 256, 61159090448414546291, 1953125, 32
OFFSET
1,2
EXAMPLE
0^(1 + 2) = 0^3 = 0 = a(1).
3^(2 + 2) = 3^4 = 81 = a(2).
5^(2 + 3) = 5^5 = 3125 = a(3).
7^(2 + 3) = 7^5 = 16807 = a(4).
3^(2 + 2) = 3^4 = 81 = a(5).
5^(11 + 2) = 5^13 = 1220703125 = a(6).
2^(3 + 13) = 2^16 = 65536 = a(7).
2^(7 + 3) = 2^10 = 1024 = a(8), etc.
MAPLE
pflat2 := proc(nmax) local a, ifs, n, p, c ; a := [0, 1] ; for n from 2 to nmax do ifs := ifactors(n)[2] ; for p in ifs do a := [op(a), op(1, p)] ; if op(2, p) > 1 then a := [op(a), op(2, p)] ; fi; od: od: a ; end: pL := pflat2(120) : for n from 1 to nops(pL)-4 by 3 do printf("%d, ", op(n, pL)^(op(n+1, pL)+op(n+2, pL)) ) ; od: # R. J. Mathar, Nov 06 2008
CROSSREFS
Sequence in context: A205902 A295252 A295651 * A270343 A236894 A231768
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended by R. J. Mathar, Nov 06 2008
STATUS
approved