login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135654
Divisors of 8128 (the 4th perfect number), written in base 2.
13
1, 10, 100, 1000, 10000, 100000, 1000000, 1111111, 11111110, 111111100, 1111111000, 11111110000, 111111100000, 1111111000000
OFFSET
1,2
COMMENTS
The number of divisors of the 4th perfect number is equal to 2*A000043(4)=A061645(4)=14.
FORMULA
a(n)=A133024(n), written in base 2. Also, for n=1 .. 14: If n<=(A000043(4)=7) then a(n) is the concatenation of the digit "1" and n-1 digits "0" else a(n) is the concatenation of A000043(4)=7 digits "1" and (n-1-A000043(4)) digits "0".
EXAMPLE
The structure of divisors of 8128 (see A133024)
-------------------------------------------------------------------------
n ... Divisor . Formula ....... Divisor written in base 2 ...............
-------------------------------------------------------------------------
1)......... 1 = 2^0 ........... 1
2)......... 2 = 2^1 ........... 10
3)......... 4 = 2^2 ........... 100
4)......... 8 = 2^3 ........... 1000
5)........ 16 = 2^4 ........... 10000
6)........ 32 = 2^5 ........... 100000
7)........ 64 = 2^6 ........... 1000000 ... (The 4th superperfect number)
8)....... 127 = 2^7 - 2^0 ..... 1111111 ... (The 4th Mersenne prime)
9)....... 254 = 2^8 - 2^1 ..... 11111110
10)...... 508 = 2^9 - 2^2 ..... 111111100
11)..... 1016 = 2^10- 2^3 ..... 1111111000
12)..... 2032 = 2^11- 2^4 ..... 11111110000
13)..... 4064 = 2^12- 2^5 ..... 111111100000
14)..... 8128 = 2^13- 2^6 ..... 1111111000000 ... (The 4th perfect number)
MATHEMATICA
FromDigits[IntegerDigits[#, 2]]&/@Divisors[8128] (* Harvey P. Dale, Jan 08 2014 *)
CROSSREFS
For more information see A133024 (Divisors of 8128). Cf. A000043, A000079, A000396, A000668, A019279, A061645, A061652.
Sequence in context: A136872 A119084 A136875 * A219112 A232661 A029800
KEYWORD
base,nonn,fini,full,easy,less
AUTHOR
Omar E. Pol, Feb 23 2008, Mar 03 2008
STATUS
approved