login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135652
Divisors of 28 (the 2nd perfect number), written in base 2.
11
1, 10, 100, 111, 1110, 11100
OFFSET
1,2
COMMENTS
The number of divisors of the second perfect number is equal to 2*A000043(2)=A061645(2)=6.
FORMULA
a(n)=A018254(n), written in base 2. Also, for n=1 .. 6: If n<=(A000043(2)=3) then a(n) is the concatenation of the digit "1" and n-1 digits "0" else a(n) is the concatenation of A000043(2)=3 digits "1" and (n-1-A000043(2)) digits "0".
EXAMPLE
The structure of divisors of 28 (see A018254)
----------------------------------------------------------------------
n ... Divisor . Formula ....... Divisor written in base 2 ............
----------------------------------------------------------------------
1)......... 1 = 2^0 ........... 1
2)......... 2 = 2^1 ........... 10
3)......... 4 = 2^2 ........... 100 .... (The 2nd superperfect number)
4)......... 7 = 2^3 - 2^0 ..... 111 .... (The 2nd Mersenne prime)
5)........ 14 = 2^4 - 2^1 ..... 1110
6)........ 28 = 2^5 - 2^2 ..... 11100... (The 2nd perfect number)
MATHEMATICA
FromDigits[IntegerDigits[#, 2]]&/@Divisors[28] (* Harvey P. Dale, Nov 14 2020 *)
PROG
(PARI) apply(n->fromdigits(binary(n)), divisors(28)) \\ Charles R Greathouse IV, Jun 21 2017
CROSSREFS
For more information see A018254 (Divisors of 28). Cf. A000043, A000079, A000396, A000668, A019279, A061645, A061652.
Sequence in context: A273245 A276349 A167502 * A035504 A072366 A349316
KEYWORD
base,nonn,fini,full,easy,less
AUTHOR
Omar E. Pol, Feb 23 2008, Mar 03 2008
STATUS
approved