Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jan 08 2014 16:12:41
%S 1,10,100,1000,10000,100000,1000000,1111111,11111110,111111100,
%T 1111111000,11111110000,111111100000,1111111000000
%N Divisors of 8128 (the 4th perfect number), written in base 2.
%C The number of divisors of the 4th perfect number is equal to 2*A000043(4)=A061645(4)=14.
%H <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>
%F a(n)=A133024(n), written in base 2. Also, for n=1 .. 14: If n<=(A000043(4)=7) then a(n) is the concatenation of the digit "1" and n-1 digits "0" else a(n) is the concatenation of A000043(4)=7 digits "1" and (n-1-A000043(4)) digits "0".
%e The structure of divisors of 8128 (see A133024)
%e -------------------------------------------------------------------------
%e n ... Divisor . Formula ....... Divisor written in base 2 ...............
%e -------------------------------------------------------------------------
%e 1)......... 1 = 2^0 ........... 1
%e 2)......... 2 = 2^1 ........... 10
%e 3)......... 4 = 2^2 ........... 100
%e 4)......... 8 = 2^3 ........... 1000
%e 5)........ 16 = 2^4 ........... 10000
%e 6)........ 32 = 2^5 ........... 100000
%e 7)........ 64 = 2^6 ........... 1000000 ... (The 4th superperfect number)
%e 8)....... 127 = 2^7 - 2^0 ..... 1111111 ... (The 4th Mersenne prime)
%e 9)....... 254 = 2^8 - 2^1 ..... 11111110
%e 10)...... 508 = 2^9 - 2^2 ..... 111111100
%e 11)..... 1016 = 2^10- 2^3 ..... 1111111000
%e 12)..... 2032 = 2^11- 2^4 ..... 11111110000
%e 13)..... 4064 = 2^12- 2^5 ..... 111111100000
%e 14)..... 8128 = 2^13- 2^6 ..... 1111111000000 ... (The 4th perfect number)
%t FromDigits[IntegerDigits[#,2]]&/@Divisors[8128] (* _Harvey P. Dale_, Jan 08 2014 *)
%Y For more information see A133024 (Divisors of 8128). Cf. A000043, A000079, A000396, A000668, A019279, A061645, A061652.
%K base,nonn,fini,full,easy,less
%O 1,2
%A _Omar E. Pol_, Feb 23 2008, Mar 03 2008