login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029800
Numbers k such that k, k^2 and k^3 all have the same set of digits.
6
0, 1, 10, 100, 1000, 10000, 100000, 1000000, 4152760, 9845261, 10000000, 10253497, 10357426, 10384796, 10972365, 12546973, 13247805, 15942760, 16537428, 17534690, 18326705, 18392576, 18492763, 18659437, 19728603, 21648705, 23956714, 24130568, 24351980, 24931756, 27681350
OFFSET
1,3
LINKS
FORMULA
a(n) ~ n. - David A. Corneth, Nov 13 2023
EXAMPLE
9845261 is in the sequence as 9845261 has digits {1, 2, 4, 5, 6, 8, 9}, 9845261^2 = 96929164158121 has digits {1, 2, 4, 5, 6, 8, 9} as does 9845261^3 = 954292919648546514581. - David A. Corneth, Nov 13 2023
MATHEMATICA
Select[Range[0, 2*10^7], Union[IntegerDigits[#]]==Union[ IntegerDigits[ #^2]] == Union[ IntegerDigits[ #^3]]&] (* Harvey P. Dale, Nov 04 2015 *)
PROG
(PARI)
is(n) = {
my(s = Set(digits(n)));
s == Set(digits(n^2)) && s == Set(digits(n^3))
} \\ David A. Corneth, Nov 13 2023
CROSSREFS
Cf. A011557 (a subsequence).
Sequence in context: A135654 A219112 A232661 * A232662 A168070 A263019
KEYWORD
nonn,base
EXTENSIONS
More terms from David A. Corneth, Nov 13 2023
STATUS
approved