login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128935
a(n) = Fibonacci(5^n) / 5^n.
2
1, 1, 3001, 475400918060101145703001, 29642179764875707696452732234250095350341524541114277856812964100763567848899514572925690068090872073476146381237687662210078001
OFFSET
0,3
COMMENTS
Numbers k such that k divides Fibonacci(k) are listed in A023172.
All powers of 5 belong to A023172.
5^n divides Fibonacci(5^n).
a(n) == 1 (mod 1000).
{a(n+1)/a(n)} = {1, 3001, 158414167964045700001, 62351961552434956321060201440347372028390478647963811251289490034177804212636326088548682319305439375001, ...}.
FORMULA
a(n) = Fibonacci(5^n) / 5^n.
a(n+1) = 5^(4*n+1)*a(n)^5 - 5^(2*n+1)*a(n)^3 + a(n) with a(0) = 1. - Peter Bala, Nov 24 2022
MAPLE
a := proc(n) option remember; if n = 0 then 1 else 5^(4*n-3)*a(n-1)^5 - 5^(2*n-1)*a(n-1)^3 + a(n-1) end if; end proc: seq(a(n), n = 0..5); # Peter Bala, Nov 24 2022
MATHEMATICA
Table[ Fibonacci[ 5^n ] / 5^n, {n, 0, 4} ]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alexander Adamchuk, May 11 2007
STATUS
approved