login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128936
a(n) = binomial(n, sum_digits_n).
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, 92378, 190, 1330, 7315, 33649, 134596, 480700, 1562275, 4686825, 13123110, 34597290, 4060, 31465, 201376, 1107568, 5379616, 23535820, 94143280, 348330136, 1203322288
OFFSET
0,11
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 1..1000 from G. C. Greubel)
EXAMPLE
a(12) = binomial(12,3) = 220.
MAPLE
P:=proc(n) local a, i, k, w; for i from 1 by 1 to n do w:=0; k:=i; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; a:=binomial(i, w); print(a); od; end: P(100);
a:=proc(n) local nn, s: nn:=convert(n, base, 10): s:=sum(nn[j], j=1..nops(nn)): binomial(n, s): end: seq(a(n), n=0..38); # Emeric Deutsch, May 04 2007
MATHEMATICA
Table[Binomial[n, Total[IntegerDigits[n]]], {n, 1, 40}] (* G. C. Greubel, Feb 10 2019 *)
PROG
(PARI) a(n) = binomial(n, sumdigits(n)); \\ Michel Marcus, Feb 10 2019
(Sage) [binomial(n, sum(int(d) for d in str(n))) for n in (1..40)] # G. C. Greubel, Feb 10 2019
CROSSREFS
Cf. A007953.
Sequence in context: A008502 A008492 A023035 * A000582 A229890 A243744
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
a(0)=1 prepended by Seiichi Manyama, Apr 24 2019
STATUS
approved