login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Fibonacci(5^n) / 5^n.
2

%I #12 Dec 04 2022 13:06:19

%S 1,1,3001,475400918060101145703001,

%T 29642179764875707696452732234250095350341524541114277856812964100763567848899514572925690068090872073476146381237687662210078001

%N a(n) = Fibonacci(5^n) / 5^n.

%C Numbers k such that k divides Fibonacci(k) are listed in A023172.

%C All powers of 5 belong to A023172.

%C 5^n divides Fibonacci(5^n).

%C a(n) == 1 (mod 1000).

%C {a(n+1)/a(n)} = {1, 3001, 158414167964045700001, 62351961552434956321060201440347372028390478647963811251289490034177804212636326088548682319305439375001, ...}.

%F a(n) = Fibonacci(5^n) / 5^n.

%F a(n+1) = 5^(4*n+1)*a(n)^5 - 5^(2*n+1)*a(n)^3 + a(n) with a(0) = 1. - _Peter Bala_, Nov 24 2022

%p a := proc(n) option remember; if n = 0 then 1 else 5^(4*n-3)*a(n-1)^5 - 5^(2*n-1)*a(n-1)^3 + a(n-1) end if; end proc: seq(a(n), n = 0..5); # _Peter Bala_, Nov 24 2022

%t Table[ Fibonacci[ 5^n ] / 5^n, {n,0,4} ]

%Y Cf. A023172, A121169, A121170, A058635, A045529.

%K nonn,easy

%O 0,3

%A _Alexander Adamchuk_, May 11 2007