OFFSET
1,1
COMMENTS
In 1944, Alaoglu and Erdős conjectured that this sequence was infinite and this was proved to be true by Nicolas in 1969.
LINKS
L. Alaoglu and P. Erdős, On highly composite and similar numbers, Trans. Amer. Math. Soc., 56 (1944), 448-469.
Jean-Louis Nicolas, Ordre maximal d'un élément du groupe Sn des permutations et "highly composite numbers" Bull. Soc. Math. France 97: (1969), pp. 129-191.
Eric Weisstein's World of Mathematics, Superabundant Number.
Wikipedia, Highly Abundant Numbers.
FORMULA
EXAMPLE
The sequence of highly abundant numbers begins 1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20 and the sequence of superabundant numbers begins 1, 2, 4, 6, 12, 24. Because 10 is the third number which is in the first sequence but not in the second, it follows that a(3)=10.
MATHEMATICA
habdata1=FoldList[Max, 1, Table[DivisorSigma[1, n], {n, 2, 10000}]]; data1=Flatten[Position[habdata1, #, 1, 1]&/@Union[habdata1]]; sabdata2=FoldList[Max, 1, Table[DivisorSigma[1, n]/n, {n, 2, 10000}]]; data2=Flatten[Position[sabdata2, #, 1, 1]&/@Union[sabdata2]]; sabdata2=FoldList[Max, 1, Table[DivisorSigma[1, n]/n, {n, 2, 10000}]]; Complement[data1, data2]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ant King, Mar 28 2007
STATUS
approved