login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185870
(Even,odd)-polka dot array in the natural number array A000027, by antidiagonals.
4
3, 8, 10, 17, 19, 21, 30, 32, 34, 36, 47, 49, 51, 53, 55, 68, 70, 72, 74, 76, 78, 93, 95, 97, 99, 101, 103, 105, 122, 124, 126, 128, 130, 132, 134, 136, 155, 157, 159, 161, 163, 165, 167, 169, 171, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351, 380, 382, 384, 386, 388, 390, 392, 394, 396, 398, 400, 402, 404, 406
OFFSET
1,1
COMMENTS
This is the third of four polka dot arrays in the array A000027. See A185868.
row 1: A033816
col 1: A014105
col 2: -A168244
antidiagonal sums: A061317
antidiagonal sums: 3*(octahedral numbers) = 3*A005900.
FORMULA
T(n,k) = 2*n + (n+k-1)*(2*n+2*k-3), k>=1, n>=1.
EXAMPLE
Northwest corner:
3....8....17...30...47
10...19...32...49...70
21...34...51...72...97
36...53...74...99...128
MATHEMATICA
f[n_, k_]:=2n+(2n+2k-3)(n+k-1);
TableForm[Table[f[n, k], {n, 1, 10}, {k, 1, 15}]]
Table[f[n-k+1, k], {n, 14}, {k, n, 1, -1}]//Flatten
CROSSREFS
Cf. A000027 (as an array), A185868, A185869, A185871.
Sequence in context: A128699 A104816 A181022 * A341938 A341939 A244353
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 05 2011
STATUS
approved