login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128696
Alternating sum of the seventh powers of the first n Fibonacci numbers.
9
0, -1, 0, -128, 2059, -76066, 2021086, -60727431, 1740361110, -50782989034, 1471652245341, -42759682650188, 1241158781898676, -36040175501820901, 1046363981321362852, -30381064378888637148, 882092032492683277335, -25611107658594421205278, 743603574761804566730466, -21590121866471006254739195, 626857059065125789349713930
OFFSET
0,4
COMMENTS
Natural bilateral extension (brackets mark index 0): ..., 2177594, 80442, 2317, 130, 2, 1, 0, [0], -1, 0, -128, 2059, -76066, 2021086 ... This is A098533-reversed followed by A128696.
LINKS
Index entries for linear recurrences with constant coefficients, signature (-20,294,819,-2912,728,1365,-252,-22,1).
FORMULA
Let F(n) be the Fibonacci number A000045(n).
a(n) = Sum_{k=1..n} (-1)^k F(k)^7.
Closed form: a(n) = (-1)^n (F(7n+7) - F(7n))/3625 + 7(F(5n+1) - 2 F(5n+4))/1375 + (-1)^n 21 F(3n+1)/250 - 7 F(n+2)/25 + 139/638.
Recurrence: a(n) + 20 a(n-1) - 294 a(n-2) - 819 a(n-3) + 2912 a(n-4) - 728 a(n-5) - 1365 a(n-6) + 252 a(n-7) + 22 a(n-8) - a(n-9) = 0.
G.f.: A(x) = (-x - 20 x^2 + 166 x^3 + 318 x^4 - 166 x^5 - 20 x^6 + x^7)/(1 + 20 x - 294 x^2 - 819 x^3 + 2912 x^4 - 728 x^5 - 1365 x^6 + 252 x^7 + 22 x^8 - x^9) = -x*(1 + 20 x - 166 x^2 - 318 x^3 + 166 x^4 + 20 x^5 - x^6)/ ((1 - x)*(1 - x - x^2)*(1 + 4 x - x^2)*(1 - 11 x - x^2)*(1 + 29 x - x^2)).
MATHEMATICA
a[ n_Integer ] := If[ n >= 0, Sum[ (-1)^k Fibonacci[ k ]^7, {k, 1, n} ], Sum[ -(-1)^k Fibonacci[ -k ]^7, {k, 1, -n - 1} ] ]
Accumulate[Times@@@Partition[Riffle[Fibonacci[Range[0, 30]]^7, {1, -1}], 2]] (* Harvey P. Dale, May 11 2012 *)
PROG
(PARI) a(n) = sum(k=1, n, (-1)^k*fibonacci(k)^7); \\ Michel Marcus, Dec 10 2016
(Magma) [(&+[(-1)^k*Fibonacci(k)^7: k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jan 17 2018
KEYWORD
sign,easy
AUTHOR
Stuart Clary, Mar 23 2007
STATUS
approved