login
A127647
Triangle read by rows: row n consists of n-1 zeros followed by Fibonacci(n).
17
1, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 34, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 89, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 144, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 233, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 377
OFFSET
1,6
COMMENTS
This sequence * A007318 (Pascal's Triangle) = A016095. A007318 * this sequence = A094436
With offset (0,6), this is [0,0,0,0,0,0,0,0,0,0,...] DELTA [1,1,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 26 2007
FORMULA
An infinite lower triangular matrix with the Fibonacci sequence in the main diagonal and the rest zeros.
G.f.: -x*y/(-1+x*y+x^2*y^2). - R. J. Mathar, Aug 11 2015
EXAMPLE
First few rows of the triangle:
1;
0, 1;
0, 0, 2;
0, 0, 0, 3;
0, 0, 0, 0, 5;
0, 0, 0, 0, 0, 8;
MATHEMATICA
Flatten[Table[{Table[0, {n-1}], Fibonacci[n]}, {n, 15}]] (* Harvey P. Dale, Jan 11 2016 *)
PROG
(PARI) T(n, k)=if(k==n, fibonacci(n), 0); \\ G. C. Greubel, Jul 11 2019
(Magma) [k eq n select Fibonacci(n) else 0: k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 11 2019
(Sage)
def T(n, k):
if (k==n): return fibonacci(n)
else: return 0
[[T(n, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Jul 11 2019
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Gary W. Adamson, Jan 22 2007
STATUS
approved