login
A094436
Triangular array T(n,k) = Fibonacci(k+1)*binomial(n,k) for k = 0..n; n >= 0.
15
1, 1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 4, 12, 12, 5, 1, 5, 20, 30, 25, 8, 1, 6, 30, 60, 75, 48, 13, 1, 7, 42, 105, 175, 168, 91, 21, 1, 8, 56, 168, 350, 448, 364, 168, 34, 1, 9, 72, 252, 630, 1008, 1092, 756, 306, 55, 1, 10, 90, 360, 1050, 2016, 2730, 2520, 1530, 550, 89
OFFSET
0,5
COMMENTS
Let F(n) denote the n-th Fibonacci number (A000045). Then n-th row sum of T is F(2n+1) and n-th alternating row sum is F(n-1).
A094436 is jointly generated with A094437 as a triangular array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x) = u(n-1,x) + x*v(n-1,x) and v(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 26 2012
Subtriangle of the triangle given by (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 26 2012
This sequence gives the coefficients of the Jensen polynomials (increasing powers of x) for the sequence {A000045(k)}_{k >= 0} of degree n with shift 1. Here the definition of Jensen polynomials of degree n and shift m of an arbitrary real sequence {s(k)}_{k >= 0} is used: J(s,m;n,x) := Sum_{j=0..n} binomial(n,j)*s(j + m)*x^j, This definition is used by Griffin et al. with a different notation. - Wolfdieter Lang, Jun 25 2019
LINKS
Michael Griffin, Ken Ono, Larry Rolen, and Don Zagier, Jensen polynomials for the Riemann zeta function and other sequences, PNAS, vol. 116, no. 23, 11103-11110, June 4, 2019.
FORMULA
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 26 2012
G.f. (-1+x)/(-1+2*x+x*y-x^2*y+x^2*y^2-x^2). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Oct 30 2019: (Start)
T(n, k) = binomial(n, k)*Fibonacci(k+1).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+1).
Sum_{k=0..n} (-1)^k*T(n,k) = Fibonacci(n-1). (End)
EXAMPLE
First four rows:
1
1 1
1 2 2
1 3 6 3
Sum = 1+3+6+3=13=F(7); alt.Sum = 1-3+6-3=1=F(2).
T(3,2)=F(3)C(3,2)=2*3=6.
From Philippe Deléham, Mar 26 2012: (Start)
(1, 0, 0, 1, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, ...) begins :
1
1, 0
1, 1, 0
1, 2, 2, 0
1, 3, 6, 3, 0
1, 4, 12, 12, 5, 0
1, 5, 20, 30, 25, 8, 0
1, 6, 30, 60, 75, 48, 13, 0 . (End)
MAPLE
with(combinat); seq(seq(fibonacci(k+1)*binomial(n, k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
MATHEMATICA
(* First program *)
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A094436 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A094437 *)
(* Second program *)
Table[Fibonacci[k+1]*Binomial[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 11 2019 *)
PROG
(PARI) T(n, k) = fibonacci(k+1)*binomial(n, k); \\ G. C. Greubel, Jul 11 2019
(Magma) [Fibonacci(k+1)*Binomial(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 11 2019
(Sage) [[fibonacci(k+1)*binomial(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 11 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> Fibonacci(k+1)* Binomial(n, k) ))); # G. C. Greubel, Jul 11 2019
KEYWORD
nonn,easy,tabl
AUTHOR
Clark Kimberling, May 03 2004
EXTENSIONS
Offset set to 0 by Alois P. Heinz, Aug 11 2015
STATUS
approved