# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a127647 Showing 1-1 of 1 %I A127647 #19 Sep 08 2022 08:45:29 %S A127647 1,0,1,0,0,2,0,0,0,3,0,0,0,0,5,0,0,0,0,0,8,0,0,0,0,0,0,13,0,0,0,0,0,0, %T A127647 0,21,0,0,0,0,0,0,0,0,34,0,0,0,0,0,0,0,0,0,55,0,0,0,0,0,0,0,0,0,0,89, %U A127647 0,0,0,0,0,0,0,0,0,0,0,144,0,0,0,0,0,0,0,0,0,0,0,0,233,0,0,0,0,0,0,0,0,0,0,0,0,0,377 %N A127647 Triangle read by rows: row n consists of n-1 zeros followed by Fibonacci(n). %C A127647 This sequence * A007318 (Pascal's Triangle) = A016095. A007318 * this sequence = A094436 %C A127647 With offset (0,6), this is [0,0,0,0,0,0,0,0,0,0,...] DELTA [1,1,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, Jan 26 2007 %H A127647 G. C. Greubel, Rows n = 1..100 of triangle, flattened %F A127647 An infinite lower triangular matrix with the Fibonacci sequence in the main diagonal and the rest zeros. %F A127647 G.f.: -x*y/(-1+x*y+x^2*y^2). - _R. J. Mathar_, Aug 11 2015 %e A127647 First few rows of the triangle: %e A127647 1; %e A127647 0, 1; %e A127647 0, 0, 2; %e A127647 0, 0, 0, 3; %e A127647 0, 0, 0, 0, 5; %e A127647 0, 0, 0, 0, 0, 8; %t A127647 Flatten[Table[{Table[0,{n-1}],Fibonacci[n]},{n,15}]] (* _Harvey P. Dale_, Jan 11 2016 *) %o A127647 (PARI) T(n,k)=if(k==n, fibonacci(n), 0); \\ _G. C. Greubel_, Jul 11 2019 %o A127647 (Magma) [k eq n select Fibonacci(n) else 0: k in [1..n], n in [1..15]]; // _G. C. Greubel_, Jul 11 2019 %o A127647 (Sage) %o A127647 def T(n, k): %o A127647 if (k==n): return fibonacci(n) %o A127647 else: return 0 %o A127647 [[T(n, k) for k in (1..n)] for n in (1..15)] # _G. C. Greubel_, Jul 11 2019 %Y A127647 Cf. A007318, A094436, A016095. %K A127647 nonn,tabl,easy %O A127647 1,6 %A A127647 _Gary W. Adamson_, Jan 22 2007 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE