login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016095
Triangular array T(n,k) read by rows, where T(n,k) = coefficient of x^n*y^k in 1/(1-x-y-(x+y)^2).
7
1, 1, 1, 2, 4, 2, 3, 9, 9, 3, 5, 20, 30, 20, 5, 8, 40, 80, 80, 40, 8, 13, 78, 195, 260, 195, 78, 13, 21, 147, 441, 735, 735, 441, 147, 21, 34, 272, 952, 1904, 2380, 1904, 952, 272, 34, 55, 495, 1980, 4620, 6930, 6930, 4620, 1980, 495, 55
OFFSET
0,4
COMMENTS
Triangle T(n,k), 0<=k<=n, read by rows, given by [1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 10 2005
FORMULA
G.f.: 1/(1-x-y-(x+y)^2).
T(n,k) = Fibonacci(n+1)*binomial(n,k) = A000045(n+1)*A007318(n,k). - Philippe Deléham, Oct 14 2006
Sum_[k, 0<=k<=[n/2]}T(n-k,k) = A123392(n). - Philippe Deléham, Oct 14 2006
G.f.: T(0)/2, where T(k) = 1 + 1/(1 - (2*k+1+ x*(1+y))*x*(1+y)/((2*k+2+ x*(1+y))*x*(1+y)+ 1/T(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 06 2013
T(n,k) = T(n-1,k)+T(n-1,k-1)+T(n-2,k)+2*T(n-2,k-1)+T(n-2,k-2), T(0,0) = T(1,0) = T(1,1) = 1, T(2,0) = T(2,2) = 2, T(2,1) = 4, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 12 2013
MAPLE
read transforms; 1/(1-x-y-(x+y)^2); SERIES2(%, x, y, 12); SERIES2TOLIST(%, x, y, 12);
MATHEMATICA
T[n_, k_] := SeriesCoefficient[1/(1-x-y-(x+y)^2), {x, 0, n}, {y, 0, k}]; Table[T[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 04 2017 *)
CROSSREFS
Columns include A000045, A023607. Central diagonal is A102307. Antidiagonal sums are in A063727.
Sequence in context: A335678 A368434 A134400 * A298309 A349205 A181399
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Jan 23 2001
STATUS
approved