login
A122840
a(n) is the number of 0's at the end of n when n is written in base 10.
47
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0
OFFSET
1,100
COMMENTS
Greatest k such that 10^k divides n.
a(n) = the number of digits in n - A160093(n).
a(A005117(n)) <= 1. - Reinhard Zumkeller, Mar 30 2010
See A054899 for the partial sums. - Hieronymus Fischer, Jun 08 2012
From Amiram Eldar, Mar 10 2021: (Start)
The asymptotic density of the occurrences of k is 9/10^(k+1).
The asymptotic mean of this sequence is 1/9. (End)
LINKS
S. Ikeda and K. Matsuoka, On transcendental numbers generated by certain integer sequences, Siauliai Math. Semin., 8 (16) 2013, 63-69.
FORMULA
a(n) = A160094(n) - 1.
From Hieronymus Fischer, Jun 08 2012: (Start)
With m = floor(log_10(n)), frac(x) = x-floor(x):
a(n) = Sum_{j=1..m} (1 - ceiling(frac(n/10^j))).
a(n) = m + Sum_{j=1..m} (floor(-frac(n/10^j))).
a(n) = A054899(n) - A054899(n-1).
G.f.: g(x) = Sum_{j>0} x^10^j/(1-x^10^j). (End)
a(n) = min(A007814(n), A112765(n)). - Jianing Song, Jul 23 2022
EXAMPLE
a(160) = 1 because there is 1 zero at the end of 160 when 160 is written in base 10.
MATHEMATICA
a[n_] := IntegerExponent[n, 10]; Array[a, 100] (* Amiram Eldar, Mar 10 2021 *)
PROG
(Haskell)
a122840 n = if n < 10 then 0 ^ n else 0 ^ d * (a122840 n' + 1)
where (n', d) = divMod n 10
-- Reinhard Zumkeller, Mar 09 2013
(PARI) a(n)=valuation(n, 10) \\ Charles R Greathouse IV, Feb 26 2014
(Python)
def a(n): return len(str(n)) - len(str(int(str(n)[::-1]))) # Indranil Ghosh, Jun 09 2017
(Python)
def A122840(n): return len(s:=str(n))-len(s.rstrip('0')) # Chai Wah Wu, Jul 06 2022
(Python)
A122840 = lambda n: sympy.multiplicity(10, n) # M. F. Hasler, Apr 05 2024
CROSSREFS
A007814 is the base 2 equivalent of this sequence.
Sequence in context: A118553 A102448 A102683 * A083919 A063665 A276306
KEYWORD
nonn,base,easy
AUTHOR
Reinhard Zumkeller, Sep 13 2006
STATUS
approved