login
A004151
Omit trailing zeros from n.
20
1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 21, 22, 23, 24, 25, 26, 27, 28, 29, 3, 31, 32, 33, 34, 35, 36, 37, 38, 39, 4, 41, 42, 43, 44, 45, 46, 47, 48, 49, 5, 51, 52, 53, 54, 55, 56, 57, 58, 59, 6, 61, 62, 63, 64, 65, 66, 67, 68, 69, 7, 71, 72, 73, 74, 75, 76, 77, 78, 79, 8, 81, 82, 83, 84, 85, 86, 87, 88, 89, 9, 91, 92, 93, 94, 95, 96, 97, 98, 99, 1, 101, 102, 103, 104, 105, 106, 107, 108, 109, 11, 111, 112, 113, 114, 115, 116, 117, 118, 119, 12
OFFSET
1,2
LINKS
FORMULA
a(n) = a(n/10) if n mod 10 = 0, otherwise n. - Reinhard Zumkeller, Feb 02 2012
G.f. A(x) satisfies: A(x) = A(x^10) + x/(1 - x)^2 - 10*x^10/(1 - x^10)^2. - Ilya Gutkovskiy, Oct 27 2019
Sum_{k=1..n} a(k) ~ (5/11) * n^2. - Amiram Eldar, Nov 20 2022
MATHEMATICA
Flatten[Table[n/Take[Intersection[Divisors[n], 10^Range[0, Floor[Log[10, n]]]], -1], {n, 120}]] (* Alonso del Arte, Feb 02 2012 *)
Table[n/10^IntegerExponent[n, 10], {n, 120}] (* Harvey P. Dale, May 02 2018 *)
PROG
(Haskell)
a004151 = until ((> 0) . (`mod` 10)) (`div` 10)
-- Reinhard Zumkeller, Feb 01 2012
(PARI) a(n)=n/10^valuation(n, 10) \\ Charles R Greathouse IV, Oct 31 2012
(Python)
def A004151(n):
a, b = divmod(n, 10)
while not b:
n = a
a, b = divmod(n, 10)
return n # Chai Wah Wu, Feb 20 2024
CROSSREFS
Sequence in context: A068636 A328131 A004719 * A151765 A343750 A107603
KEYWORD
nonn,base,easy
STATUS
approved