OFFSET
1,10
COMMENTS
a(n) is the Levenshtein distance from the decimal expansion of n - 1 to the decimal expansion of n. For example, to convert "9" to "10", substitute "0" for "9" and insert "1". Since two such operations are required, a(10) = 2. See the analogous A091090 (binary expansion) and A115777 (full definition). - Rick L. Shepherd, Mar 25 2015
LINKS
Rick L. Shepherd, Table of n, a(n) for n = 1..10000
FORMULA
From Hieronymus Fischer, Jun 08 2012: (Start)
With m = floor(log_10(n)), frac(x) = x-floor(x):
a(n) = Sum_{j=0..m} (1 - ceiling(frac(n/10^j))).
a(n) = m + 1 + Sum_{j=1..m} (floor(-frac(n/10^j))).
G.f.: g(x) = (x/(1-x)) + Sum_{j>0} x^10^j/(1-x^10^j). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 10/9. - Amiram Eldar, Jul 10 2023
EXAMPLE
a(160) = 2 because the last nonzero digit of 160 (counting from left to right), when 160 is written in base 10, is 6, and that 6 occurs 2 digits from the right in 160.
MATHEMATICA
IntegerExponent[Range[150]]+1 (* Harvey P. Dale, Feb 06 2015 *)
PROG
(Other)
For(n := 1, n < 10001, Inc(n), Echo(n +> ' ' +> Levenshtein(n-1, n)))
Copy the above line into an editing buffer of Notepad++ with the NppCalc plugin installed and ActiveCalc enabled. Position the cursor at the end of the line and press enter to duplicate the contents of this b-file. - Rick L. Shepherd, Mar 25 2015
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Anonymous, May 01 2009
EXTENSIONS
Name simplified by Jon E. Schoenfield, Feb 26 2014
STATUS
approved