login
A099024
a(n) = A033466(5n+2). Values of A033466(n) that differ from A058031(n+1)+1.
3
10, 650, 986, 18850, 51410, 114610, 223450, 79186, 653050, 1018810, 1520210, 2187250, 610586, 4153250, 5527210, 7216810, 9267050, 2345186, 14644450, 18076610, 22079410, 26712850, 6407986, 38126650, 45042010, 52858010
OFFSET
0,1
LINKS
FORMULA
G.f.: P(x)/(1-x^5)^5, where P(x) is a 24-degree polynomial.
a(n) = denominators of (2*n+1)/((n^2+(2*n+1)^2)*(1+(5*n+3)^2)). - G. C. Greubel, Oct 14 2024
MATHEMATICA
Table[Denominator[(2*n+1)/((n^2+(2*n+1)^2)*(1+(5*n+3)^2))], {n, 0, 40}] (* G. C. Greubel, Oct 14 2024 *)
PROG
(Magma)
A099024:= func< n | Denominator((2*n+1)/((n^2+(2*n+1)^2)*((5*n+3)^2+1))) >;
[A099024(n): n in [0..40]]; // G. C. Greubel, Oct 14 2024
(SageMath)
def A099024(n): return denominator((2*n+1)/((n^2+(2*n+1)^2)*((5*n+3)^2+1)))
[A099024(n) for n in range(41)] # G. C. Greubel, Oct 14 2024
CROSSREFS
Cf. A096431 (numerators).
Sequence in context: A132543 A261328 A280897 * A126680 A249848 A214108
KEYWORD
nonn
AUTHOR
Ralf Stephan, Sep 25 2004
STATUS
approved