# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a099024 Showing 1-1 of 1 %I A099024 #11 Oct 16 2024 21:29:46 %S A099024 10,650,986,18850,51410,114610,223450,79186,653050,1018810,1520210, %T A099024 2187250,610586,4153250,5527210,7216810,9267050,2345186,14644450, %U A099024 18076610,22079410,26712850,6407986,38126650,45042010,52858010 %N A099024 a(n) = A033466(5n+2). Values of A033466(n) that differ from A058031(n+1)+1. %H A099024 G. C. Greubel, Table of n, a(n) for n = 0..2000 %F A099024 G.f.: P(x)/(1-x^5)^5, where P(x) is a 24-degree polynomial. %F A099024 a(n) = denominators of (2*n+1)/((n^2+(2*n+1)^2)*(1+(5*n+3)^2)). - _G. C. Greubel_, Oct 14 2024 %t A099024 Table[Denominator[(2*n+1)/((n^2+(2*n+1)^2)*(1+(5*n+3)^2))], {n,0,40}] (* _G. C. Greubel_, Oct 14 2024 *) %o A099024 (Magma) %o A099024 A099024:= func< n | Denominator((2*n+1)/((n^2+(2*n+1)^2)*((5*n+3)^2+1))) >; %o A099024 [A099024(n): n in [0..40]]; // _G. C. Greubel_, Oct 14 2024 %o A099024 (SageMath) %o A099024 def A099024(n): return denominator((2*n+1)/((n^2+(2*n+1)^2)*((5*n+3)^2+1))) %o A099024 [A099024(n) for n in range(41)] # _G. C. Greubel_, Oct 14 2024 %Y A099024 Cf. A096431 (numerators). %K A099024 nonn %O A099024 0,1 %A A099024 _Ralf Stephan_, Sep 25 2004 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE