login
A033466
Denominators of the first differences of 1/(n^2 + 1).
3
2, 10, 10, 170, 442, 962, 1850, 650, 5330, 8282, 12322, 17690, 986, 33490, 44522, 58082, 74530, 18850, 117650, 145162, 177242, 214370, 51410, 305810, 361202, 423802, 494210, 114610, 660970, 758642
OFFSET
0,1
LINKS
FORMULA
For all n not in A016873, a(n) = n^4 + 2n^3 + 3n^2 + 2n + 2, else A099024((n-2)/5). - Ralf Stephan, Sep 25 2004
a(n) = denominator of (2*n+1)/((n^2+1)*((n+1)^2+1)). - G. C. Greubel, Oct 14 2024
MATHEMATICA
Table[Denominator[(1+2*n)/((1+n^2)*(1+(n+1)^2))], {n, 0, 40}] (* G. C. Greubel, Oct 14 2024 *)
PROG
(Magma)
A033466:= func< n | Denominator((2*n+1)/((n^2+1)*((n+1)^2+1))) >;
[A033466(n): n in [0..40]]; // G. C. Greubel, Oct 14 2024
(SageMath)
def A033466(n): return denominator((2*n+1)/((n^2+1)*((n+1)^2+1)))
[A033466(n) for n in range(41)] # G. C. Greubel, Oct 14 2024
CROSSREFS
Cf. A033465 (numerators).
Sequence in context: A066394 A232500 A351659 * A193181 A338401 A222638
KEYWORD
nonn,frac
STATUS
approved