login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084077
Length of list created by n substitutions k -> Range(-abs(k+1), abs(k-1)) starting with {1}.
3
1, 3, 11, 41, 159, 633, 2575, 10657, 44735, 190017, 815231, 3527681, 15378687, 67478401, 297777407, 1320753665, 5884652543, 26326301697, 118211192831, 532574203905, 2406726828031, 10906541371393
OFFSET
0,2
LINKS
FORMULA
invOGF satisfies n - (1+3*n)*a(n) - 2*n*(1+n)*a(n)^2 - 2*n^2*a(n)^3 = 0. [Is it true?]
Recurrence: (n+3)*(7*n-4)*a(n) = 3*(7*n^2+3*n+2)*a(n-1) + 2*(28*n^2+5*n-9)*a(n-2) + 4*(n-1)*(7*n+3)*a(n-3). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ sqrt(52+34*sqrt(2))*(2+2*sqrt(2))^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
EXAMPLE
{1}, {-2,-1,0}, {-1,0,1,2,3,0,1,2,-1,0,1}
MATHEMATICA
Length/@Flatten/@NestList[ # /. k_Integer:>Range[ -Abs[k+1], Abs[k-1]]&, {1}, 8]
Flatten[{1, RecurrenceTable[{(n+3)*(7*n-4)*a[n] == 3*(7*n^2+3*n+2)*a[n-1] + 2*(28*n^2+5*n-9)*a[n-2] + 4*(n-1)*(7*n+3)*a[n-3], a[1]==3, a[2]==11, a[3]==41}, a, {n, 20}]}] (* Vaclav Kotesovec, Oct 14 2012 *)
PROG
(Magma) I:=[1, 3, 11]; [n le 3 select I[n] else (3*(7*n^2 -11*n +6)*Self(n-1) + 2*(28*n^2 -51*n +14)*Self(n-2) + 4*(n-2)*(7*n-4)*Self(n-3))/((n+2)*(7*n-11)): n in [1..41]]; // G. C. Greubel, Nov 23 2022
(SageMath)
@CachedFunction
def a(n): # a = A084077
if (n<3): return (1, 3, 11)[n]
else: return (3*(7*n^2 +3*n +2)*a(n-1) + 2*(28*n^2 +5*n -9)*a(n-2) + 4*(n-1)*(7*n+3)*a(n-3))/((n+3)*(7*n-4))
[a(n) for n in range(31)] # G. C. Greubel, Nov 23 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Wouter Meeussen, May 11 2003
STATUS
approved