login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084076
Length of list created by n substitutions k -> Range[-1-abs(k), abs(k)+1] starting with {1}.
7
1, 5, 27, 157, 963, 6141, 40323, 270845, 1852419, 12857341, 90337283, 641286141, 4592533507, 33139654653, 240723001347, 1758796578813, 12916805074947, 95300512382973, 706044251602947, 5250379998560253, 39176121681444867
OFFSET
0,2
COMMENTS
2*a(n-1) is the second diagonal of the triangle A115195.
Row sums of A167432. Hankel transform is A167435. - Paul Barry, Nov 03 2009
LINKS
FORMULA
G.f. is the series reversion of -((1 + 5*x + 2*x^2 - (1 + 2*x)*sqrt(1 + 6*x + x^2))/(4*x^2)).
G.f.: 2*((c(2*x))^3)/(1+c(2*x)) with the o.g.f. c(x) of A000108 (Catalan numbers).
a(n) = Sum_{j=1..n+1} A115195(n, j), n >= 0.
G.f.: (-1 + (1-x)*c(2*x))/(x*(1+x)); cf. A115139. - Wolfdieter Lang, Feb 23 2006
D-finite with recurrence: (n+2)*(7*n-5)*a(n) = (7*n-2)*(7*n-1)*a(n-1) + 4*(2*n-1)*(7*n+2)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 7*2^(3n+3)/(9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
D-finite with recurrence (n+2)*a(n) = 2*(4*n+1)*a(n-1) + (n+16)*a(n-2) - 4*(2*n-3)*a(n-3). - R. J. Mathar, Mar 10 2022
a(n) = ( (7*n-1)*(7*n-2)*a(n-1) + 4*(2*n-1)*(7*n+2)*a(n-2) )/((n+2)*(7*n-5)), with a(0) = 1, a(1) = 5. - G. C. Greubel, Nov 23 2022
EXAMPLE
{1}
{-2,-1,0,1,2}
{-3,-2,-1,0,1,2,3,-2,-1,0,1,2,-1,0,1,-2,-1,0,1,2,-3,-2,-1,0,1,2,3}
MATHEMATICA
Rest@CoefficientList[InverseSeries[Series[ -((1+5*n+2*n^2-(1+2*n)*Sqrt[1+6*n+n^2] )/(4*n^2)), {n, 0, 28}]], n] or Length/@Flatten/@NestList[ # /. k_Integer :> Range[ -1-Abs[k], Abs[k]+1]&, {1}, 8]
Flatten[{1, RecurrenceTable[{(n+2)*(7*n-5)*a[n] == (7*n-2)*(7*n-1)*a[n-1] + 4*(2*n-1)*(7*n+2)*a[n-2], a[1]==5, a[2]==27}, a, {n, 20}]}] (* Vaclav Kotesovec, Oct 14 2012 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-5*x -(1- x)*Sqrt(1-8*x))/(4*x^2*(1+x)) )); // G. C. Greubel, Nov 23 2022
(Sage)
def A084076_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-5*x -(1-x)*sqrt(1-8*x))/(4*x^2*(1+x)) ).list()
A084076_list(40) # G. C. Greubel, Nov 23 2022
(PARI) {a(n) = my(L); L = [1]; if(n < 0, 0, for(i = 1, n, L = concat([ vector(3 + 2*abs(k), i, i - abs(k) - 2) | k <- L])); #L)}; /* Michael Somos, Nov 23 2022 */
CROSSREFS
Third column (m=2) of triangle A115193, called C(1, 2).
Sequence in context: A357227 A101386 A153233 * A355252 A337011 A081924
KEYWORD
nonn
AUTHOR
Wouter Meeussen, May 11 2003
STATUS
approved