Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Nov 27 2022 10:43:12
%S 1,3,11,41,159,633,2575,10657,44735,190017,815231,3527681,15378687,
%T 67478401,297777407,1320753665,5884652543,26326301697,118211192831,
%U 532574203905,2406726828031,10906541371393
%N Length of list created by n substitutions k -> Range(-abs(k+1), abs(k-1)) starting with {1}.
%H Vincenzo Librandi, <a href="/A084077/b084077.txt">Table of n, a(n) for n = 0..200</a>
%F invOGF satisfies n - (1+3*n)*a(n) - 2*n*(1+n)*a(n)^2 - 2*n^2*a(n)^3 = 0. [Is it true?]
%F Recurrence: (n+3)*(7*n-4)*a(n) = 3*(7*n^2+3*n+2)*a(n-1) + 2*(28*n^2+5*n-9)*a(n-2) + 4*(n-1)*(7*n+3)*a(n-3). - _Vaclav Kotesovec_, Oct 14 2012
%F a(n) ~ sqrt(52+34*sqrt(2))*(2+2*sqrt(2))^n/(sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 14 2012
%e {1}, {-2,-1,0}, {-1,0,1,2,3,0,1,2,-1,0,1}
%t Length/@Flatten/@NestList[ # /. k_Integer:>Range[ -Abs[k+1], Abs[k-1]]&, {1}, 8]
%t Flatten[{1,RecurrenceTable[{(n+3)*(7*n-4)*a[n] == 3*(7*n^2+3*n+2)*a[n-1] + 2*(28*n^2+5*n-9)*a[n-2] + 4*(n-1)*(7*n+3)*a[n-3],a[1]==3,a[2]==11,a[3]==41},a,{n,20}]}] (* _Vaclav Kotesovec_, Oct 14 2012 *)
%o (Magma) I:=[1,3,11]; [n le 3 select I[n] else (3*(7*n^2 -11*n +6)*Self(n-1) + 2*(28*n^2 -51*n +14)*Self(n-2) + 4*(n-2)*(7*n-4)*Self(n-3))/((n+2)*(7*n-11)): n in [1..41]]; // _G. C. Greubel_, Nov 23 2022
%o (SageMath)
%o @CachedFunction
%o def a(n): # a = A084077
%o if (n<3): return (1,3,11)[n]
%o else: return (3*(7*n^2 +3*n +2)*a(n-1) + 2*(28*n^2 +5*n -9)*a(n-2) + 4*(n-1)*(7*n+3)*a(n-3))/((n+3)*(7*n-4))
%o [a(n) for n in range(31)] # _G. C. Greubel_, Nov 23 2022
%Y Cf. A084075, A084076, A084078.
%K nonn
%O 0,2
%A _Wouter Meeussen_, May 11 2003