OFFSET
0,1
COMMENTS
Period 6: repeat [1, 0, 0, 0, 0, 0].
a(n)=1 if n=6k, a(n)=0 otherwise.
Decimal expansion of 1/999999.
Number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=3, r=3, I={-2,-1,0,1,2}.
Also, number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=1, r=5, I={0,1,2,3,4}.
a(n) is also the number of partitions of n such that each part is six (a(0)=1 because the empty partition has no parts to test equality with six). Hence a(n) is also the number of 2-regular graphs on n vertices with each part having girth exactly six. - Jason Kimberley, Oct 10 2011
This sequence is the Euler transformation of A185016. - Jason Kimberley, Oct 10 2011
REFERENCES
D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..65538
Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (April, 2010), 119-135
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).
FORMULA
a(n) = a(n-6).
G.f.: 1/(1-x^6).
a(n) = floor((1/2)*cos(n*Pi/3) + 1/2). - Gary Detlefs, May 16 2011
a(n) = floor(n/6) - floor((n-1)/6). - Tani Akinari, Oct 23 2012
a(n) = (((((v^n - w^n)^2)*(2 - (-1)^n)*(w^(2*n) + w^n - 3))^2 - 144)^2)/20736, where w = (-1+i*sqrt(3))/2, v = (1+i*sqrt(3))/2. - Bogart B. Strauss, Sep 20 2013
E.g.f.: (2*cos(sqrt(3)*x/2)*cosh(x/2) + cosh(x))/3. - Vaclav Kotesovec, Feb 15 2015
MATHEMATICA
PadRight[{}, 120, {1, 0, 0, 0, 0, 0}] (* Harvey P. Dale, Feb 19 2013 *)
PROG
(Magma) &cat[[1, 0^^5]^^30];
(Magma) A079979 := func<n|IsDivisibleBy(n, 6)select 1 else 0>; [A079979:n in [0..59]]; // Jason Kimberley, Oct 10 2011
(PARI) a(n)=!(n%6) \\ Charles R Greathouse IV, Oct 10 2011
(Scheme) (define (A079979 n) (if (zero? (modulo n 6)) 1 0)) ;; Antti Karttunen, Dec 22 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Baltic, Feb 17 2003
EXTENSIONS
More terms from Antti Karttunen, Dec 22 2017
STATUS
approved