login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097325
Period 6: repeat [0, 1, 1, 1, 1, 1].
19
0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1
OFFSET
0,1
COMMENTS
a(n) is 0 if 6 divides n, 1 otherwise.
FORMULA
G.f.: 1/(1-x) - 1/(1-x^6) = Sum_{k>=0} x^k - x^(6*k).
Recurrence: a(n+6) = a(n), a(0) = 0, a(i) = 1, 1 <= i <= 5.
a(n) = (1/4) * (3 - (-1)^n - (-1)^((n+1)/3) - (-1)^((2n+1)/3)).
From Reinhard Zumkeller, Nov 30 2009: (Start)
a(n) = 1 - A079979(n).
a(A047253(n)) = 1, a(A008588(n)) = 0.
A033438(n) = Sum_{k=0..n} a(k)*(n-k). (End)
Dirichlet g.f.: (1 - 1/6^s)*zeta(s). - R. J. Mathar, Feb 19 2011
For the general case: the characteristic function of numbers that are not multiples of m is a(n) = floor((n-1)/m) - floor(n/m) + 1, m, n > 0. - Boris Putievskiy, May 08 2013
a(n) = sign(n mod 6). - Wesley Ivan Hurt, Jun 29 2013
a(n) = ceiling(5n/6) - floor(5n/6). - Wesley Ivan Hurt, Jun 20 2014
MAPLE
seq(signum(k mod 6), k=0..100); # Wesley Ivan Hurt, Jun 29 2013
MATHEMATICA
Table[Boole[Not[Divisible[n, 6]]], {n, 0, 89}] (* Alonso del Arte, Oct 21 2013 *)
PadRight[{}, 120, {0, 1, 1, 1, 1, 1}] (* Michael De Vlieger, Dec 22 2017 *)
PROG
(PARI) a(n) = sign(n%6);
(Magma) [Sign(n mod 6) : n in [0..50]]; // Wesley Ivan Hurt, Jun 20 2014
(Scheme) (define (A097325 n) (if (zero? (modulo n 6)) 0 1)) ;; Antti Karttunen, Dec 22 2017
CROSSREFS
Characteristic sequence of A047253.
Binary complement of A079979.
Sequence in context: A089496 A182067 A196147 * A372726 A242647 A167393
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Aug 16 2004
EXTENSIONS
New name from Omar E. Pol, Oct 21 2013
STATUS
approved