login
A089010
a(n) = 1 if n is an exponent of the Weyl group W(E_8), 0 otherwise.
3
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,1
COMMENTS
The exponents are 1, 7, 11, 13, 17, 19, 23, 29. The point of this sequence is that a similar generating function gives the exponents for any finite Coxeter group.
FORMULA
G.f.: x*(1-x^20)*(1-x^24)/((1-x^6)*(1-x^10)).
MATHEMATICA
PadRight[CoefficientList[Series[x(1-x^20)(1-x^24)/((1-x^6)(1-x^10)), {x, 0, 120}], x], 120, 0] (* Harvey P. Dale, May 15 2018 *)
PROG
(PARI) Vec(x*(1-x^20)*(1-x^24)/((1-x^6)*(1-x^10)) + O(x^90)) \\ Michel Marcus, Aug 19 2015
CROSSREFS
Sequence in context: A079979 A288711 A347312 * A162289 A373139 A122276
KEYWORD
easy,nonn
AUTHOR
Paul Boddington, Nov 03 2003
STATUS
approved