login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059560
Beatty sequence for 1 - 1/log(gamma).
2
2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 31, 33, 36, 39, 42, 45, 47, 50, 53, 56, 59, 62, 64, 67, 70, 73, 76, 78, 81, 84, 87, 90, 93, 95, 98, 101, 104, 107, 109, 112, 115, 118, 121, 124, 126, 129, 132, 135, 138, 140, 143, 146, 149, 152, 155, 157, 160, 163, 166, 169, 172
OFFSET
1,1
REFERENCES
Fraenkel, Aviezri S.; Levitt, Jonathan; Shimshoni, Michael; Characterization of the set of values f(n)=[n alpha], n=1,2,... Discrete Math.2 (1972), no.4,335-345.
LINKS
Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
Eric Weisstein's World of Mathematics, Beatty Sequence.
FORMULA
a(n) = floor(n*(1-1/log(gamma))). - Michel Marcus, Jan 05 2015
MAPLE
seq( floor(n*(1-1/log(gamma))), n=0..100) ;
MATHEMATICA
Floor[Range[100]*(1 - 1/Log[EulerGamma])] (* Paolo Xausa, Jul 05 2024 *)
PROG
(PARI) { default(realprecision, 100); b=1 + 1/log(1/Euler); for (n = 1, 2000, write("b059560.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
CROSSREFS
Beatty complement is A059559.
Sequence in context: A276881 A282457 A329848 * A022842 A356057 A189525
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jan 22 2001
STATUS
approved