login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356057
a(n) = A001951(A137804(n)).
8
2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 32, 35, 38, 41, 43, 46, 49, 52, 55, 57, 60, 65, 67, 70, 73, 76, 79, 82, 84, 87, 90, 94, 97, 100, 103, 106, 108, 111, 114, 117, 120, 123, 127, 130, 132, 135, 138, 141, 144, 147, 149, 152, 155, 159, 162, 165, 168, 171, 173
OFFSET
1,1
COMMENTS
This is the second of four sequences that partition the positive integers. See A356056.
FORMULA
a(n) = A001951(A137804(n)).
EXAMPLE
(1) u o v = (1, 4, 7, 9, 12, 15, 18, 21, 24, 26, 29, 31, ...) = A356056
(2) u o v' = (2, 5, 8, 11, 14, 16, 19, 22, 25, 28, 32, 35, ...) = A356057
(3) u' o v = (3, 10, 17, 23, 30, 37, 44, 51, 58, 64, 71, ...) = A356058
(4) u' o v' = (6, 13, 20, 27, 34, 40, 47, 54, 61, 68, 78, ...) = A356059
MATHEMATICA
u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *)
u1 = Complement[Range[Max[u]], u] (* A001952 *)
v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *)
v1 = Complement[Range[Max[v]], v] (* A137804 *)
Table[u[[v[[n]]]], {n, 1, z/8}]; (* A356056 *)
Table[u[[v1[[n]]]], {n, 1, z/8}]; (* A356057 *)
Table[u1[[v[[n]]]], {n, 1, z/8}]; (* A356058 *)
Table[u1[[v1[[n]]]], {n, 1, z/8}]; (* A356059 *)
CROSSREFS
Cf. A001951, A001952, A136803, A137804, A356052 (intersections instead of results of composition), A356056, A356058, A356059.
Sequence in context: A329848 A059560 A022842 * A189525 A189369 A055048
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 26 2022
STATUS
approved