login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Beatty sequence for 1 - 1/log(gamma).
2

%I #22 Jul 05 2024 08:23:37

%S 2,5,8,11,14,16,19,22,25,28,31,33,36,39,42,45,47,50,53,56,59,62,64,67,

%T 70,73,76,78,81,84,87,90,93,95,98,101,104,107,109,112,115,118,121,124,

%U 126,129,132,135,138,140,143,146,149,152,155,157,160,163,166,169,172

%N Beatty sequence for 1 - 1/log(gamma).

%D Fraenkel, Aviezri S.; Levitt, Jonathan; Shimshoni, Michael; Characterization of the set of values f(n)=[n alpha], n=1,2,... Discrete Math.2 (1972), no.4,335-345.

%H Harry J. Smith, <a href="/A059560/b059560.txt">Table of n, a(n) for n = 1..2000</a>

%H Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, <a href="http://dx.doi.org/10.1016/0012-365X(72)90012-X">Characterization of the set of values f(n)=[n alpha], n=1,2,...</a>, Discrete Math. 2 (1972), no.4, 335-345.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence</a>.

%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>

%F a(n) = floor(n*(1-1/log(gamma))). - _Michel Marcus_, Jan 05 2015

%p seq( floor(n*(1-1/log(gamma))),n=0..100) ;

%t Floor[Range[100]*(1 - 1/Log[EulerGamma])] (* _Paolo Xausa_, Jul 05 2024 *)

%o (PARI) { default(realprecision, 100); b=1 + 1/log(1/Euler); for (n = 1, 2000, write("b059560.txt", n, " ", floor(n*b)); ) } \\ _Harry J. Smith_, Jun 28 2009

%Y Beatty complement is A059559.

%Y Cf. A001620, A002389.

%K nonn,easy

%O 1,1

%A _Mitch Harris_, Jan 22 2001