login
A059557
Beatty sequence for 1 + gamma^2, (gamma is the Euler-Mascheroni constant A001620).
4
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94
OFFSET
1,2
LINKS
Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
Eric Weisstein's World of Mathematics, Beatty Sequence.
FORMULA
a(n) = A042968(n-1), 1<=n<2146. - R. J. Mathar, Oct 05 2008
MATHEMATICA
Table[Floor[(1 + EulerGamma^2)*n], {n, 1, 100}] (* G. C. Greubel, Aug 27 2018 *)
PROG
(PARI) { default(realprecision, 100); b=1 + Euler^2; for (n = 1, 2000, write("b059557.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
(Magma) R:=RealField(100); [Floor((1+EulerGamma(R)^2)*n): n in [1..100]]; // G. C. Greubel, Aug 27 2018
CROSSREFS
Beatty complement is A059558.
Sequence in context: A039053 A352675 A329974 * A195291 A042968 A337037
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jan 22 2001
STATUS
approved