OFFSET
0,4
REFERENCES
V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-4,-2,2,4,3,-12,3,4,2,-2,-4,4,-1).
FORMULA
G.f.: x^3*(2 + x + 2*x^2 + 4*x^3 - x^5 - 2*x^6)/((1 - x)^8*(1 + x)^2*(1 + x + x^2)^2). - Andrew Howroyd, Feb 02 2024
EXAMPLE
There are 30 3-element antichains on an unlabeled 5-element set: {{5},{4},{3}}, {{5},{4},{2,3}}, {{5},{4},{1,2,3}}, {{5},{3,4},{2,4}}, {{5},{3,4},{1,2}}, {{5},{3,4},{1,2,4}}, {{5},{2,3,4},{1,3,4}}, {{4,5},{3,5},{3,4}}, {{4,5},{3,5},{2,5}}, {{4,5},{3,5},{2,4}},{{4,5},{3,5},{2,3,4}}, {{4,5},{3,5},{1,2}}, {{4,5},{3,5},{1,2,5}}, {{4,5},{3,5},{1,2,4}}, {{4,5},{3,5},{1,2,3,4}}, {{4,5},{2,3},{1,3,5}}, {{4,5},{2,3,5},{2,3,4}}, {{4,5},{2,3,5},{1,3,5}}, {{4,5},{2,3,5},{1,3,4}}, {{4,5},{2,3,5},{1,2,3}}, {{4,5},{2,3,5},{1,2,3,4}}, {{4,5},{1,2,3,5},{1,2,3,4}}, {{3,4,5},{2,4,5},{2,3,5}}, {{3,4,5},{2,4,5},{1,4,5}}, {{3,4,5},{2,4,5},{1,3,5}}, {{3,4,5},{2,4,5},{1,2,3}}, {{3,4,5},{2,4,5},{1,2,3,5}}, {{3,4,5},{1,2,5},{1,2,3,4}}, {{3,4,5},{1,2,4,5},{1,2,3,5}}, {{2,3,4,5},{1,3,4,5},{1,2,4,5}}.
PROG
(PARI) seq(n)=Vec((2 + x + 2*x^2 + 4*x^3 - x^5 - 2*x^6)/((1 - x)^8*(1 + x)^2*(1 + x + x^2)^2) + O(x^(n-2)), -(n+1)) \\ Andrew Howroyd, Feb 02 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Aug 17 2000
EXTENSIONS
a(8) onwards from Andrew Howroyd, Feb 02 2024
STATUS
approved