OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (in Russian), Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
Index entries for linear recurrences with constant coefficients, signature (4, -4, -2, 2, 4, 3, -12, 3, 4, 2, -2, -4, 4, -1).
FORMULA
G.f.: -x*(x^3-x^2-1)*(x^6+x^4+2*x^3+x^2+1)/((x^3-1)^2*(x^2-1)^2*(x-1)^4).
MATHEMATICA
Rest[CoefficientList[Series[-x*(x^3 - x^2 - 1)*(x^6 + x^4 + 2*x^3 + x^2 + 1)/((x^3 - 1)^2*(x^2 - 1)^2*(x - 1)^4), {x, 0, 50}], x]] (* G. C. Greubel, Oct 06 2017 *)
LinearRecurrence[{4, -4, -2, 2, 4, 3, -12, 3, 4, 2, -2, -4, 4, -1}, {1, 4, 14, 39, 96, 213, 437, 837, 1520, 2632, 4380, 7040, 10979, 16668}, 40] (* Harvey P. Dale, Jun 10 2024 *)
PROG
(PARI) x='x+O('x^50); Vec(-x*(x^3-x^2-1)*(x^6+x^4+2*x^3+x^2+1)/( (x^3-1)^2*(x^2-1)^2*(x-1)^4)) \\ G. C. Greubel, Oct 06 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Jul 03 2000
EXTENSIONS
More terms from James A. Sellers, Jul 04 2000
STATUS
approved