OFFSET
3,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 3..1000
V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (in Russian), Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
Index entries for linear recurrences with constant coefficients, signature (3,1,-9,0,12,7,-15,-16,16,15,-7,-12,0,9,-1,-3,1).
FORMULA
G.f.: -x^3*(x^8+x^7-3*x^6-x^5+x^4+3*x^3-x^2-3*x-4)/((x^3-1)^2*(x^2-1)^2*(x-1)^4).
MATHEMATICA
Rest[Rest[Rest[CoefficientList[Series[-x^3*(x^8 + x^7 - 3*x^6 - x^5 + x^4 + 3*x^3 - x^2 - 3*x - 4)/((x^3 - 1)^2*(x^2 - 1)^2*(x - 1)^4), {x, 0, 50}], x]]]] (* G. C. Greubel, Oct 06 2017 *)
LinearRecurrence[{3, 1, -9, 0, 12, 7, -15, -16, 16, 15, -7, -12, 0, 9, -1, -3, 1}, {4, 19, 61, 157, 353, 717, 1355, 2412, 4094, 6676, 10524, 16108, 24036, 35063, 50135, 70409, 97295}, 33] (* Vincenzo Librandi, Oct 07 2017 *)
PROG
(PARI) x='x+O('x^50); Vec(-x^3*(x^8+x^7-3*x^6-x^5+x^4+3*x^3-x^2-3*x-4)/((x^3-1)^2*(x^2-1)^2*(x-1)^4)) \\ G. C. Greubel, Oct 06 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Jul 03 2000
EXTENSIONS
More terms from James A. Sellers, Jul 04 2000
STATUS
approved