login
A158765
a(n) = 76*n^2 - 1.
2
75, 303, 683, 1215, 1899, 2735, 3723, 4863, 6155, 7599, 9195, 10943, 12843, 14895, 17099, 19455, 21963, 24623, 27435, 30399, 33515, 36783, 40203, 43775, 47499, 51375, 55403, 59583, 63915, 68399, 73035, 77823, 82763, 87855, 93099, 98495, 104043, 109743, 115595
OFFSET
1,1
COMMENTS
The identity (76*n^2 - 1)^2 - (1444*n^2 - 38)*(2*n)^2 = 1 can be written as a(n)^2 - A158764(n)*A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
G.f.: x*(-75 - 78*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 23 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(2*sqrt(19)))*Pi/(2*sqrt(19)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(2*sqrt(19)))*Pi/(2*sqrt(19)) - 1)/2. (End)
MATHEMATICA
76*Range[40]^2-1 (* or *) LinearRecurrence[{3, -3, 1}, {75, 303, 683}, 40] (* Harvey P. Dale, Jan 18 2012 *)
PROG
(Magma) I:=[75, 303, 683]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 21 2012
(PARI) for(n=1, 40, print1(76*n^2 - 1", ")); \\ Vincenzo Librandi, Feb 21 2012
CROSSREFS
Sequence in context: A174685 A158742 A292313 * A226741 A223078 A055561
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 26 2009
EXTENSIONS
Comment rewritten and formula replaced by R. J. Mathar, Oct 22 2009
STATUS
approved