login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052702
A simple context-free grammar.
5
0, 0, 0, 0, 1, 2, 3, 6, 13, 26, 52, 108, 226, 472, 993, 2106, 4485, 9586, 20576, 44332, 95814, 207688, 451438, 983736, 2148618, 4702976, 10314672, 22664452, 49887084, 109985772, 242854669, 537004218, 1189032613, 2636096922, 5851266616, 13002628132, 28925389870, 64412505472, 143576017410
OFFSET
0,6
COMMENTS
From Paul Barry, May 24 2009: (Start)
Hankel transform of A052702 is A160705. Hankel transform of A052702(n+1) is A160706.
Hankel transform of A052702(n+2) is -A131531(n+1). Hankel transform of A052702(n+3) is A160706(n+5).
Hankel transform of A052702(n+4) is A160705(n+5). (End)
For n > 1, number of Dyck (n-1)-paths with each descent length one greater or one less than the preceding ascent length. - David Scambler, May 11 2012
FORMULA
G.f.: (1/2)*(1/x^2 - 1/x)*(1-x-sqrt(1-2*x+x^2-4*x^3)) - x.
Recurrence: {a(1)=0, a(2)=0, a(4)=1, a(3)=0, a(6)=3, a(7)=6, a(5)=2, (-2+4*n)*a(n)+(-7-5*n)*a(n+1)+(8+3*n)*a(n+2)+(-13-3*n)*a(n+3)+(n+6)*a(n+4)}.
From Paul Barry, May 24 2009: (Start)
G.f.: (1-2*x+x^2-2*x^3-(1-x)*sqrt(1-2*x+x^2-4*x^3))/(2*x^2).
a(n+1) = Sum_{k=0..n-1} C(n-k-1,2k-1)*A000108(k). (End)
MAPLE
spec := [S, {B=Prod(C, Z), S=Prod(B, B), C=Union(S, B, Z)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
a[n_] := Sum[Binomial[n-k-2, 2k-1] CatalanNumber[k], {k, 0, n-2}];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 11 2022, after Paul Barry *)
PROG
(PARI)
x='x+O('x^66);
s='a0+(1-2*x+x^2-2*x^3-(1-x)*sqrt(1-2*x+x^2-4*x^3))/(2*x^2);
v=Vec(s); v[1]-='a0; v
/* Joerg Arndt, May 11 2012 */
CROSSREFS
Sequence in context: A290991 A007910 A293315 * A058766 A127601 A030038
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from Joerg Arndt, May 11 2012
STATUS
approved