login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052703
A simple context-free grammar.
2
0, 0, 0, 1, 3, 12, 49, 210, 927, 4191, 19305, 90285, 427570, 2046324, 9881862, 48090824, 235619133, 1161257580, 5753365015, 28638093270, 143148398085, 718242481770, 3616135914375, 18263111515740, 92500790125770, 469737499557222, 2391192703656054, 12199557377107450
OFFSET
0,5
FORMULA
G.f.: RootOf(-_Z+_Z^2+_Z^3+x)-RootOf(-_Z+_Z^2+_Z^3+x)^2-x
Recurrence: {a(1)=0, a(2)=0, a(3)=1, a(4)=3, (30-135*n+135*n^2)*a(n)+(-130-107*n+29*n^2)*a(n+1)+(-281*n-198-91*n^2)*a(n+2)+(15*n^2+75*n+90)*a(n+3)}
From Seiichi Manyama, Nov 22 2024: (Start)
G.f.: (x*B(x))^3 where B(x) is the g.f. of A001002.
a(n) = 3 * Sum_{k=0..n-3} binomial(n+k,k) * binomial(k,n-3-k)/(n+k). (End)
a(n) ~ 3^(3*n - 5/2) / (sqrt(Pi) * 2^(3/2) * n^(3/2) * 5^(n - 1/2)). - Vaclav Kotesovec, Nov 22 2024
MAPLE
spec := [S, {C=Prod(B, B), B=Union(S, C, Z), S=Prod(B, C)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
PROG
(PARI) my(N=30, x='x+O('x^N)); concat([0, 0, 0], Vec(serreverse(x-x^2-x^3)-serreverse(x-x^2-x^3)^2-x)) \\ Seiichi Manyama, Nov 22 2024
(PARI) a(n) = 3*sum(k=0, n-3, binomial(n+k, k)*binomial(k, n-3-k)/(n+k)); \\ Seiichi Manyama, Nov 22 2024
CROSSREFS
Sequence in context: A012864 A045890 A049673 * A151170 A151171 A151172
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from Seiichi Manyama, Nov 21 2024
STATUS
approved