login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A simple context-free grammar.
5

%I #33 Mar 04 2024 01:39:37

%S 0,0,0,0,1,2,3,6,13,26,52,108,226,472,993,2106,4485,9586,20576,44332,

%T 95814,207688,451438,983736,2148618,4702976,10314672,22664452,

%U 49887084,109985772,242854669,537004218,1189032613,2636096922,5851266616,13002628132,28925389870,64412505472,143576017410

%N A simple context-free grammar.

%C From _Paul Barry_, May 24 2009: (Start)

%C Hankel transform of A052702 is A160705. Hankel transform of A052702(n+1) is A160706.

%C Hankel transform of A052702(n+2) is -A131531(n+1). Hankel transform of A052702(n+3) is A160706(n+5).

%C Hankel transform of A052702(n+4) is A160705(n+5). (End)

%C For n > 1, number of Dyck (n-1)-paths with each descent length one greater or one less than the preceding ascent length. - _David Scambler_, May 11 2012

%H Ricardo Gómez Aíza, <a href="https://arxiv.org/abs/2402.16111">Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis</a>, arXiv:2402.16111 [math.CO], 2024. See pp. 10, 19-21.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=654">Encyclopedia of Combinatorial Structures 654</a>

%F G.f.: (1/2)*(1/x^2 - 1/x)*(1-x-sqrt(1-2*x+x^2-4*x^3)) - x.

%F Recurrence: {a(1)=0, a(2)=0, a(4)=1, a(3)=0, a(6)=3, a(7)=6, a(5)=2, (-2+4*n)*a(n)+(-7-5*n)*a(n+1)+(8+3*n)*a(n+2)+(-13-3*n)*a(n+3)+(n+6)*a(n+4)}.

%F From _Paul Barry_, May 24 2009: (Start)

%F G.f.: (1-2*x+x^2-2*x^3-(1-x)*sqrt(1-2*x+x^2-4*x^3))/(2*x^2).

%F a(n+1) = Sum_{k=0..n-1} C(n-k-1,2k-1)*A000108(k). (End)

%p spec := [S,{B=Prod(C,Z),S=Prod(B,B),C=Union(S,B,Z)},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);

%t a[n_] := Sum[Binomial[n-k-2, 2k-1] CatalanNumber[k], {k, 0, n-2}];

%t Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Oct 11 2022, after _Paul Barry_ *)

%o (PARI)

%o x='x+O('x^66);

%o s='a0+(1-2*x+x^2-2*x^3-(1-x)*sqrt(1-2*x+x^2-4*x^3))/(2*x^2);

%o v=Vec(s); v[1]-='a0; v

%o /* _Joerg Arndt_, May 11 2012 */

%K easy,nonn

%O 0,6

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E More terms from _Joerg Arndt_, May 11 2012