OFFSET
0,5
COMMENTS
Also square array T(n,k) (n >= 0, k >= 0) read by antidiagonals: T(n,k) = Sum_{i=0..k} binomial(n,i).
As a number triangle read by rows, this is T(n,k) = Sum_{i=n-2*k..n-k} binomial(n-k,i), with T(n,k) = T(n-1,k) + T(n-2,k-1). Row sums are A000071(n+2). Diagonal sums are A023435(n+1). It is the reverse of the Whitney triangle A004070. - Paul Barry, Sep 04 2005
Also, twice number of orthants intersected by a generic k-dimensional subspace of R^n [Naiman and Scheinerman, 2017]. - N. J. A. Sloane, Mar 03 2018
LINKS
Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened
Clark Kimberling, Path-counting and Fibonacci numbers, Fib. Quart. 40 (4) (2002) 328-338, Example 1C.
Daniel Q. Naiman and Edward R. Scheinerman, Arbitrage and Geometry, arXiv:1709.07446 [q-fin.MF], 2017 [Contains the square array multiplied by 2].
Richard L. Ollerton and Anthony G. Shannon, Some properties of generalized Pascal squares and triangles, Fib. Q., 36 (1998), 98-109. See Tables 5 and 14.
D. J. Price, Some unusual series occurring in n-dimensional geometry, Math. Gaz., 30 (1946), 149-150.
FORMULA
T(n, k) = Sum_{m=0..n} binomial(n-k, k-m). - Wouter Meeussen, Oct 03 2002
From Werner Schulte, Feb 15 2018: (Start)
Referring to the square array T(i,j):
G.f. of row n: Sum_{k>=0} T(n,k) * x^k = (1+x)^n / (1-x).
G.f. of T(i,j): Sum_{k>=0, n>=0} T(n,k) * x^k * y^n = 1 / ((1-x)*(1-y-x*y)).
Let a_i(n) be multiplicative with a_i(p^e) = T(i, e), p prime and e >= 0, then Sum_{n>0} a_i(n)/n^s = (zeta(s))^(i+1) / (zeta(2*s))^i for i >= 0.
(End)
T(n, k) = hypergeom([-k, -n + k], [-k], -1). - Peter Luschny, Nov 28 2021
From Jianing Song, May 30 2022: (Start)
Referring to the triangle, G.f.: Sum_{n>=0, 0<=k<=n} T(n,k) * x^n * y^k = 1 / ((1-x*y)*(1-x-x^2*y)).
T(n,k) = 2^(n-k) for ceiling(n/2) <= k <= n. (End)
EXAMPLE
Triangle begins:
[0] 1;
[1] 1, 1;
[2] 1, 2, 1;
[3] 1, 3, 2, 1;
[4] 1, 4, 4, 2, 1;
[5] 1, 5, 7, 4, 2, 1;
[6] 1, 6, 11, 8, 4, 2, 1;
[7] 1, 7, 16, 15, 8, 4, 2, 1;
[8] 1, 8, 22, 26, 16, 8, 4, 2, 1;
[9] 1, 9, 29, 42, 31, 16, 8, 4, 2, 1;
As a square array, this begins:
1 1 1 1 1 1 ...
1 2 2 2 2 2 ...
1 3 4 4 4 4 ...
1 4 7 8 8 8 ...
1 5 11 15 16 ...
1 6 16 26 31 32 ...
MAPLE
a := proc(n::nonnegint, k::nonnegint) option remember: if k=0 then RETURN(1) fi: if k=n then RETURN(1) fi: a(n-1, k)+a(n-2, k-1) end: for n from 0 to 11 do for k from 0 to n do printf(`%d, `, a(n, k)) od: od: # James A. Sellers, Mar 17 2000
with(combinat): for s from 0 to 11 do for n from s to 0 by -1 do if n=0 or s-n=0 then printf(`%d, `, 1) else printf(`%d, `, sum(binomial(n, i), i=0..s-n)) fi; od: od: # James A. Sellers, Mar 17 2000
MATHEMATICA
Table[Sum[Binomial[n-k, k-m], {m, 0, n}], {n, 0, 10}, {k, 0, n}]
T[n_, k_] := Hypergeometric2F1[-k, -n + k, -k, -1];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Nov 28 2021 *)
PROG
(PARI) T(n, k)=sum(m=0, n, binomial(n-k, k-m));
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "); ); print(); ); /* show triangle */
(Haskell)
a052509 n k = a052509_tabl !! n !! k
a052509_row n = a052509_tabl !! n
a052509_tabl = [1] : [1, 1] : f [1] [1, 1] where
f row' row = rs : f row rs where
rs = zipWith (+) ([0] ++ row' ++ [1]) (row ++ [0])
-- Reinhard Zumkeller, Nov 22 2012
(GAP) A052509:=Flat(List([0..100], n->List([0..n], k->Sum([0..n], m->Binomial(n-k, k-m))))); # Muniru A Asiru, Sat Feb 17 2018
(Magma) [[(&+[Binomial(n-k, k-j): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 13 2019
(Sage) [[sum(binomial(n-k, k-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 13 2019
CROSSREFS
Partial sums across rows of (extended) Pascal's triangle A052553.
KEYWORD
AUTHOR
N. J. A. Sloane, Mar 17 2000
EXTENSIONS
More terms from James A. Sellers, Mar 17 2000
Entry formed by merging two earlier entries. - N. J. A. Sloane, Jun 17 2007
Edited by Johannes W. Meijer, Jul 24 2011
STATUS
approved