login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048917
Indices of hexagonal numbers which are also 9-gonal.
3
1, 13, 51625, 822757, 3330519121, 53079328957, 214865110504441, 3424359827493013, 13861807735752971425, 220919149857804895597, 894280664049502087991881, 14252378030502065207035717
OFFSET
1,2
COMMENTS
As n increases, the ratio of consecutive terms settles into an approximate 2-cycle with the ratio a(n)/a(n-1) bounded above and below by 2024 + 765*sqrt(7) and 8 + 3*sqrt(7) respectively. - Ant King, Dec 29 2011
LINKS
Eric Weisstein's World of Mathematics, Nonagonal Hexagonal Number.
FORMULA
G.f.: x*(-1 - 12*x + 12902*x^2 + 3036*x^3 + 203*x^4) / ( (x-1)*(x^2 - 254*x + 1)*(x^2 + 254*x + 1) ). - R. J. Mathar, Dec 21 2011
From Ant King, Dec 29 2011: (Start)
a(n) = 64514*a(n-2) - a(n-4) - 16128.
a(n) = (1/56)*sqrt(7)*(3*((3 - sqrt(7)*(-1)^n)*(8 + 3*sqrt(7))^(2*n-2) - (3 + sqrt(7)*(-1)^n)*(8 - 3*sqrt(7))^(2*n-2)) + 2*sqrt(7)).
a(n) = ceiling((3/56)*sqrt(7)*(3 - sqrt(7)*(-1)^n)*(8 + 3*sqrt(7))^(2*n-2)).
(End)
MATHEMATICA
LinearRecurrence[{1, 64514, -64514, -1, 1}, {1, 13, 51625, 822757, 3330519121}, 210] (* Vincenzo Librandi, Dec 27 2011 *)
CROSSREFS
Sequence in context: A220981 A258670 A375538 * A081317 A203675 A189251
KEYWORD
nonn,easy
STATUS
approved