login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048915
9-gonal pentagonal numbers.
3
1, 651, 180868051, 95317119801, 26472137730696901, 13950766352135999751, 3874504486629442861646551, 2041856512426320950146560501, 567078683619272811125915867157001, 298849390212849227278846377616002051, 82998544594567922836927983404875025948251
OFFSET
1,2
COMMENTS
From Ant King, Dec 20 2011: (Start)
lim(n->Infinity, a(2n+1)/a(2n))=1/2*(277727+60605*sqrt(21)).
lim(n->Infinity, a(2n)/a(2n-1))=1/2*(527+115*sqrt(21)).
(End)
LINKS
Eric Weisstein's World of Mathematics, Nonagonal Pentagonal Number.
Index entries for linear recurrences with constant coefficients, signature (1,146361602,-146361602,-1,1).
FORMULA
From Ant King, Dec 20 2011: (Start)
a(n) = 146361602*a(n-2)-a(n-4)+35719200.
a(n) = a(n-1)+146361602*a(n-2)-146361602*a(n-3)-a(n-4)+a(n-5).
a(n) = 1/336*((25+4*sqrt(21))*(5-sqrt(21)*(-1)^n)*(2*sqrt(7)+3*sqrt(3))^(4n-4)+ (25-4*sqrt(21))*(5+sqrt(21)*(-1)^n)*(2*sqrt(7)-3*sqrt(3))^(4n-4)-82).
a(n) = floor(1/336*(25+4*sqrt(21))*(5-sqrt(21)*(-1)^n)*(2*sqrt(7)+3*sqrt(3))^(4n-4)).
G.f.: x*(1+650*x+34505798*x^2+1210450*x^3+2301*x^4) / ((1-x)*(1-12098*x+x^2)*(1+12098*x+x^2)).
(End)
MATHEMATICA
LinearRecurrence[{1, 146361602, -146361602, -1, 1}, {1, 651, 180868051, 95317119801, 26472137730696901}, 9] (* Ant King, Dec 20 2011 *)
PROG
(PARI) Vec(x*(1+650*x+34505798*x^2+1210450*x^3+2301*x^4)/((1-x)*(1-12098*x+x^2)*(1+12098*x+x^2)) + O(x^20)) \\ Colin Barker, Jun 22 2015
CROSSREFS
Sequence in context: A010087 A110850 A257715 * A257827 A261552 A002232
KEYWORD
nonn,easy
STATUS
approved