login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048918
9-gonal hexagonal numbers.
3
1, 325, 5330229625, 1353857339341, 22184715227362706161, 5634830324997758086741, 92334031424171069457850940521, 23452480456295952079681300143325, 384299427405961840930468013697980089825, 97610541547790513644729906482502335077221
OFFSET
1,2
COMMENTS
As n increases, the ratio of consecutive terms forms an approximate 2-cycle with the ratio a(n)/a(n-1) bounded above and below by 8193151+3096720*sqrt(7) and 127+48*sqrt(7) respectively. - Ant King, Dec 27 2011
LINKS
Eric Weisstein's World of Mathematics, Nonagonal Hexagonal Number.
Index entries for linear recurrences with constant coefficients, signature (1,4162056194,-4162056194,-1,1).
FORMULA
From Ant King, Dec 28 2011: (Start)
G.f.: x*(1+324*x+1168173106*x^2+20902860*x^3+82621*x^4) / ((1-x)*(1-64514*x+x^2)*(1+64514*x+x^2)).
a(n) = 4162056194*a(n-2)-a(n-4)+1189158912.
a(n) = a(n-1)+4162056194*a(n-2)-4162056194*a(n-3)-a(n-4)+a(n-5).
a(n) = 1/112*(9*((8-3*sqrt(7)*(-1)^n)*(8+3*sqrt(7))^(4*n-4)+(8+3*sqrt(7)*(-1)^n)*(8-3*sqrt(7))^(4*n-4))-32).
a(n) = floor(9/112*(8-3*sqrt(7)*(-1)^n)*(8+3*sqrt(7))^(4*n-4)). (End)
MATHEMATICA
LinearRecurrence[{1, 4162056194, -4162056194, -1, 1}, {1, 325, 5330229625, 1353857339341, 22184715227362706161}, 8] (* Ant King, Dec 27 2011 *)
PROG
(PARI) Vec(x*(1+324*x+1168173106*x^2+20902860*x^3+82621*x^4)/((1-x)*(1-64514*x+x^2)*(1+64514*x+x^2)) + O(x^20)) \\ Colin Barker, Jun 22 2015
CROSSREFS
Sequence in context: A048909 A097739 A203188 * A274307 A358148 A031516
KEYWORD
nonn,easy
STATUS
approved