login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048914
Indices of pentagonal numbers which are also 9-gonal.
3
1, 21, 10981, 252081, 132846121, 3049673901, 1607172358861, 36894954600201, 19443571064652241, 446355157703555781, 235228321132990450741, 5400004661002663236321, 2845792209623347408410361, 65329255942455062129453661, 34428393916794935813958094621
OFFSET
1,2
COMMENTS
From Ant King, Dec 20 2011: (Start)
lim(n->Infinity, a(2n+1)/a(2n))=1/2*(527+115*sqrt(21))
lim(n->Infinity, a(2n)/a(2n-1))=1/2*(23+5*sqrt(21))
(End)
LINKS
Eric Weisstein's World of Mathematics, Nonagonal Pentagonal Number.
FORMULA
From Ant King, Dec 20 2011: (Start)
a(n) = 12098*a(n-2)-a(n-4)-2016.
a(n) = a(n-1)+12098*a(n-2)-12098*a(n-3)-a(n-4)+a(n-5).
a(n) = 1/84*((2+sqrt(21))*(7-sqrt(21)*(-1)^n)*(2*sqrt(7)+3*sqrt(3))^(2n-2)+ (2-sqrt(21))*(7+sqrt(21)*(-1)^n)*(2*sqrt(7)-3*sqrt(3))^(2n-2)+14).
a(n) = ceiling(1/84*(2+sqrt(21))*(7-sqrt(21)*(-1)^n)*(2*sqrt(7)+3*sqrt(3))^(2n-2)).
G.f.: x*(1+20*x-1138*x^2-860*x^3-39*x^4) / ((1-x)*(1-110*x+x^2)*(1+110*x+x^2))
(End)
MATHEMATICA
LinearRecurrence[{1, 12098, -12098, -1, 1}, {1, 21, 10981, 252081, 132846121}, 13] (* Ant King, Dec 20 2011 *)
PROG
(PARI) Vec(x*(39*x^4+860*x^3+1138*x^2-20*x-1)/((x-1)*(x^2-110*x+1)*(x^2+110*x+1)) + O(x^20)) \\ Colin Barker, Jun 22 2015
CROSSREFS
Sequence in context: A135823 A013726 A159358 * A046183 A203674 A250065
KEYWORD
nonn,easy
STATUS
approved