login
A048669
The Jacobsthal function g(n): maximal gap in a list of all the integers relatively prime to n.
17
1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 3, 2, 2, 4, 2, 4, 3, 4, 2, 4, 2, 4, 2, 4, 2, 6, 2, 2, 3, 4, 3, 4, 2, 4, 3, 4, 2, 6, 2, 4, 3, 4, 2, 4, 2, 4, 3, 4, 2, 4, 3, 4, 3, 4, 2, 6, 2, 4, 3, 2, 3, 6, 2, 4, 3, 6, 2, 4, 2, 4, 3, 4, 3, 6, 2, 4, 2, 4, 2, 6, 3, 4, 3, 4, 2, 6, 3, 4, 3, 4, 3, 4, 2, 4, 3, 4, 2, 6, 2, 4, 5
OFFSET
1,2
COMMENTS
Equivalently, g(n) is the least integer such that among any g(n) consecutive integers i, i+1, ..., i+g(n)-1 there is at least one which is relatively prime to n.
The definition refers to all integers, not just those in the range 1..n-1.
Differs from A070194 by 1 at the primes. - T. D. Noe, Mar 21 2007
Jacobsthal's function is used in the proofs of Recamán's and Pomerance's conjectures on P-integers--see A192224. - Jonathan Sondow, Jun 14 2014
REFERENCES
E. Jacobsthal, Uber Sequenzen ganzer Zahlen, von denen keine zu n teilerfremd ist, I, II, III. Norske Vid. Selsk. Forh., 33, 1960, 117-139.
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Pages 33-34.
E. Westzynthius, Uber die Verteilung der Zahlen, die zu der n ersten Primzahlen teilerfremd sind, Comm. Phys. Math. Helsingfors 25 (1931), 1-37.
LINKS
Fintan Costello, and Paul Watts, A short note on Jacobsthal's function, arXiv preprint arXiv:1306.1064 [math.NT], 2013.
H. Iwaniec, On the problem of Jacobsthal, Demonstratio Math. 11 (1978), pp. 225-231.
Hans-Joachim Kanold, Über eine zahlentheoretische Funktion von Jacobsthal, Mathematische Annalen 170.4 (1967): 314-326.
Gerhard R. Paseman, Updating an upper bound of Erik Westzynthius, arXiv preprint arXiv:1311.5944 [math.NT], 2013-2014.
Carl Pomerance, A note on the least prime in an arithmetic progression, Journal of Number Theory 12.2 (1980): 218-223.
Harlan Stevens, On Jacobsthal's g(n)-function, Mathematische Annalen 226.1 (1977): 95-97.
Mario Ziller, John F. Morack, Algorithmic concepts for the computation of Jacobsthal's function, arXiv:1611.03310 [math.NT], 2016.
FORMULA
From N. J. A. Sloane, Apr 19 2017 (Start):
g(n) = g(Rad(n)) (cf. A007947). So in studying g(n) we may focus on the case when n is a product of w (say) distinct primes.
g(n) <= 2^w for all w [Kanold].
g(n) <= 2^(1/w) for all w >= e^50 [Kanold].
For some unknown X, g(n) <= X*(w*log(w))^2 for all w [Iwaniec].
(End)
g(n) << (log(n))^2, as proved by Iwaniec. - Charles R Greathouse IV, Sep 08 2012.
EXAMPLE
g(6)=4 because the gap between 1 and 5, both being relatively prime to 6, is maximal and 5-1 = 4.
g(7)=2, because the numbers relatively prime to 7 are 1,2,3,4,5,6,8,9,10,..., and the biggest gap is 2. Similarly a(p) = 2 for any prime p. - N. J. A. Sloane, Sep 08 2012
MATHEMATICA
g[n_] := Module[{L = 1, m = 1}, For[k = 2, k <= n+1, k++, If[GCD[k, n] == 1, If[L+m < k, m = k-L]; L = k]]; m]; Table[g[n], {n, 1, 105}] (* Jean-François Alcover, Sep 03 2013, after M. F. Hasler *)
Table[Max[Differences[Select[Range[110], CoprimeQ[#, n]&]]], {n, 110}] (* Harvey P. Dale, Jan 10 2022 *)
PROG
(PARI) A048669(n)=my(L=1, m=1); for(k=2, n+1, gcd(k, n)>1 && next; L+m<k && m=k-L; L=k); m \\ M. F. Hasler, Sep 08 2012
(Haskell)
a048669 n = maximum $ zipWith (-) (tail ts) ts where
ts = a038566_row n ++ [n + 1]
-- Reinhard Zumkeller, Oct 01 2012
CROSSREFS
Essentially same as A049298. See A132468 for another version.
Sequence in context: A216321 A058263 A232398 * A365499 A158522 A034444
KEYWORD
nonn,easy,nice
EXTENSIONS
Edited, changed symbol to g(n), added references pertaining to bounds. - N. J. A. Sloane, Apr 19 2017
STATUS
approved