OFFSET
1,2
COMMENTS
Equivalently, g(n) is the least integer such that among any g(n) consecutive integers i, i+1, ..., i+g(n)-1 there is at least one which is relatively prime to n.
The definition refers to all integers, not just those in the range 1..n-1.
Jacobsthal's function is used in the proofs of Recamán's and Pomerance's conjectures on P-integers--see A192224. - Jonathan Sondow, Jun 14 2014
REFERENCES
E. Jacobsthal, Uber Sequenzen ganzer Zahlen, von denen keine zu n teilerfremd ist, I, II, III. Norske Vid. Selsk. Forh., 33, 1960, 117-139.
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Pages 33-34.
E. Westzynthius, Uber die Verteilung der Zahlen, die zu der n ersten Primzahlen teilerfremd sind, Comm. Phys. Math. Helsingfors 25 (1931), 1-37.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Fintan Costello, and Paul Watts, A short note on Jacobsthal's function, arXiv preprint arXiv:1306.1064 [math.NT], 2013.
P. Erdős, On the integers relatively prime to n and on a number theoretic function considered by Jacobsthal. Math. Scand., 10, 1962, 163-170.
H. Iwaniec, On the problem of Jacobsthal, Demonstratio Math. 11 (1978), pp. 225-231.
Hans-Joachim Kanold, Über eine zahlentheoretische Funktion von Jacobsthal, Mathematische Annalen 170.4 (1967): 314-326.
Gerhard R. Paseman, Updating an upper bound of Erik Westzynthius, arXiv preprint arXiv:1311.5944 [math.NT], 2013-2014.
Carl Pomerance, A note on the least prime in an arithmetic progression, Journal of Number Theory 12.2 (1980): 218-223.
Harlan Stevens, On Jacobsthal's g(n)-function, Mathematische Annalen 226.1 (1977): 95-97.
Mario Ziller, John F. Morack, Algorithmic concepts for the computation of Jacobsthal's function, arXiv:1611.03310 [math.NT], 2016.
FORMULA
From N. J. A. Sloane, Apr 19 2017 (Start):
g(n) = g(Rad(n)) (cf. A007947). So in studying g(n) we may focus on the case when n is a product of w (say) distinct primes.
g(n) <= 2^w for all w [Kanold].
g(n) <= 2^(1/w) for all w >= e^50 [Kanold].
For some unknown X, g(n) <= X*(w*log(w))^2 for all w [Iwaniec].
(End)
g(n) << (log(n))^2, as proved by Iwaniec. - Charles R Greathouse IV, Sep 08 2012.
EXAMPLE
g(6)=4 because the gap between 1 and 5, both being relatively prime to 6, is maximal and 5-1 = 4.
g(7)=2, because the numbers relatively prime to 7 are 1,2,3,4,5,6,8,9,10,..., and the biggest gap is 2. Similarly a(p) = 2 for any prime p. - N. J. A. Sloane, Sep 08 2012
MATHEMATICA
g[n_] := Module[{L = 1, m = 1}, For[k = 2, k <= n+1, k++, If[GCD[k, n] == 1, If[L+m < k, m = k-L]; L = k]]; m]; Table[g[n], {n, 1, 105}] (* Jean-François Alcover, Sep 03 2013, after M. F. Hasler *)
Table[Max[Differences[Select[Range[110], CoprimeQ[#, n]&]]], {n, 110}] (* Harvey P. Dale, Jan 10 2022 *)
PROG
(PARI) A048669(n)=my(L=1, m=1); for(k=2, n+1, gcd(k, n)>1 && next; L+m<k && m=k-L; L=k); m \\ M. F. Hasler, Sep 08 2012
(Haskell)
a048669 n = maximum $ zipWith (-) (tail ts) ts where
ts = a038566_row n ++ [n + 1]
-- Reinhard Zumkeller, Oct 01 2012
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Edited, changed symbol to g(n), added references pertaining to bounds. - N. J. A. Sloane, Apr 19 2017
STATUS
approved