OFFSET
1,2
COMMENTS
Abs{a(n)} = A034444(n). Examples of Dirichlet convolutions with function a(n), i.e., b(n) = Sum_{d|n} a(d)*c(n/d): a(n) * A034444(n) = A063524(n), a(n) * A000005(n) = A010052(n), a(n) * A000027(n) = A074722(n), a(n) * A000012(n) = A008836(n).
Möbius transform of Liouville's lambda function (A008836). - Wesley Ivan Hurt, Jun 22 2024
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
FORMULA
Multiplicative with a(p^e) = 2*(-1)^e, p prime, e>0. a(p^0) = 1.
Dirichlet g.f.: zeta(2s)/(zeta(s))^2. - R. J. Mathar, Apr 02 2011
a(n) = Sum_{d|n} (-1)^Omega(d) * mu(n/d). - Wesley Ivan Hurt, Jun 22 2024
EXAMPLE
a(60) = a(2^2*3*5) = [(-1)^2*2]*[(-1)^1*2]*[(-1)^1*2] = 2*(-2)*(-2) = 8.
MATHEMATICA
Table[LiouvilleLambda[n] 2^PrimeNu[n], {n, 1, 50}] (* Geoffrey Critzer, Mar 07 2015 *)
PROG
(PARI) for(n=1, 20, print1((-1)^bigomega(n)* 2^omega(n), ", ")) \\ G. C. Greubel, May 21 2017
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Jaroslav Krizek, Mar 20 2009
STATUS
approved