login
A046738
Period of Fibonacci 3-step sequence A000073 mod n.
19
1, 4, 13, 8, 31, 52, 48, 16, 39, 124, 110, 104, 168, 48, 403, 32, 96, 156, 360, 248, 624, 220, 553, 208, 155, 168, 117, 48, 140, 1612, 331, 64, 1430, 96, 1488, 312, 469, 360, 2184, 496, 560, 624, 308, 440, 1209, 2212, 46, 416, 336, 620, 1248, 168
OFFSET
1,2
COMMENTS
Could also be called the tribonacci Pisano periods. [Carl R. White, Oct 05 2009]
Klaska notes that n=208919=59*3541 satisfies a(n) = a(n^2). - Michel Marcus, Mar 03 2016
39, 78, 273, 546 also satisfy a(n) = a(n^2). - Michel Marcus, Mar 07 2016
LINKS
T. D. Noe [1..1000] + Jean-François Alcover [1001..2000] + Zhong Ziqian [2001..20000], Table of n, a(n) for n = 1..20000
Jirí Klaška, A search for Tribonacci-Wieferich primes, Acta Mathematica Universitatis Ostraviensis, vol. 16 (2008), issue 1, pp. 15-20.
Jirí Klaška, On Tribonacci-Wieferich primes, Fibonacci Quart. 46/47 (2008/2009), no. 4, 290-297.
Jirí Klaška, Tribonacci partition formulas modulo m, Acta Mathematica Sinica, English Series, March 2010, Volume 26, Issue 3, pp 465-476.
M. E. Waddill, Some properties of a generalized Fibonacci sequence modulo m, The Fibonacci Quarterly, vol. 16, no. 4, pp. 344-353 (1978).
FORMULA
a(3^k) = 13*3^(k-1) for k > 0. If a(p) != a(p^2) for p prime, then a(p^k) = p^(k-1)*a(p) for k > 0. [Waddill, 1978] - Chai Wah Wu, Feb 25 2022
MAPLE
a:= proc(n) local f, k, l; l:= ifactors(n)[2];
if nops(l)<>1 then ilcm(seq(a(i[1]^i[2]), i=l))
else f:= [0, 0, 1];
for k do f:=[f[2], f[3], f[1]+f[2]+f[3] mod n];
if f=[0, 0, 1] then break fi
od; k
fi
end:
seq(a(n), n=1..100); # Alois P. Heinz, Aug 27 2023
MATHEMATICA
Table[a = {0, 1, 1}; a = a0 = Mod[a, n]; k = 0; While[k++; s = a[[3]] + a[[2]] + a[[1]]; a = RotateLeft[a]; a[[-1]] = Mod[s, n]; a != a0]; k, {n, 100}] (* T. D. Noe, Aug 28 2012 *)
PROG
(Python)
from itertools import count
def A046738(n):
a = b = (0, 0, 1%n)
for m in count(1):
b = b[1:] + (sum(b) % n, )
if a == b:
return m # Chai Wah Wu, Feb 27 2022
CROSSREFS
Cf. A106302.
Cf. A001175.
Sequence in context: A051432 A064461 A046737 * A095324 A264341 A356799
KEYWORD
nonn
STATUS
approved