login
A046736
Number of ways to place non-intersecting diagonals in convex n-gon so as to create no triangles.
15
1, 0, 1, 1, 4, 8, 25, 64, 191, 540, 1616, 4785, 14512, 44084, 135545, 418609, 1302340, 4070124, 12785859, 40325828, 127689288, 405689020, 1293060464, 4133173256, 13246527139, 42557271268, 137032656700, 442158893833, 1429468244788
OFFSET
2,5
LINKS
D. Birmajer, J. B. Gil, and M. D. Weiner, Colored partitions of a convex polygon by noncrossing diagonals, arXiv preprint arXiv:1503.05242 [math.CO], 2015.
S. Morrison, E. Peters, and N. Snyder, Categories generated by a trivalent vertex, arXiv preprint arXiv:1501.06869 [math.QA], 2015.
Len Smiley, A Nameless Number
Len Smiley, Variants of Schroeder Dissections, arXiv:math/9907057 [math.CO], 1999.
FORMULA
G.f.: A(x) = Sum_{n>0} a(n)*x^(n-1) satisfies A(x) - A(x)^2 - A(x)^3 = x*(1 - A(x)).
a(n) = A052524(n-1)/(n-1)!, for n > 0.
Let g = (1-x)/(1-x-x^2) then a(m) = coeff. of x^(m-2) in g^(m-1)/(m-1).
D-finite with recurrence: 5*(n-1)*n*(37*n-95)*a(n) = 4*(n-1)*(74*n^2 -301*n +300)*a(n-1) + 8*(2*n-5)*(74*n^2 -301*n +297)*a(n-2) - 2*(n-3)*(2*n-7)*(37*n-58)*a(n-3). - Vaclav Kotesovec, Aug 10 2013
EXAMPLE
a(4)=a(5)=1 because of null placement; a(6)=4 because in addition to not placing any, we might also place one between any of the 3 pairs of opposite vertices.
MAPLE
a := n->1/(n-1)*sum(binomial(n+k-2, k)*binomial(n-k-3, k-1), k=0..floor(n/2-1)); seq(a(i), i=2..30);
MATHEMATICA
(* Programs from Jean-François Alcover, Apr 14 2017: Start *)
(* First program *)
a[2]=1; a[n_] := Sum[Binomial[n+k-2, k]*Binomial[n-k-3, k-1], {k, 0, Floor[n/2]-1}]/(n-1);
(* 2nd program: *)
x*InverseSeries[Series[(y-y^2-y^3)/(1-y), {y, 0, 29}], x]
(* 3rd program: *)
a[2]=1; a[3]=0; a[n_] := HypergeometricPFQ[{2-n/2, 5/2-n/2, n}, {2, 4-n}, -4]; Table[a[n], {n, 2, 30}]
(* End *)
PROG
(PARI) a(n)=if(n<2, 0, polcoeff(serreverse((x-x^2-x^3)/(1-x)+x*O(x^n)), n-1))
(Magma)
A046736:= func< n | n eq 2 select 1 else (&+[Binomial(n+k-2, k)*Binomial(n-k-3, k-1)/(n-1): k in [0..Floor(n/2)-1]]) >;
[A046736(n): n in [2..40]]; // G. C. Greubel, Jul 31 2024
(SageMath)
def A046736(n): return 1 if n==2 else sum(binomial(n+k-2, k)*binomial(n-k-3, k-1)//(n-1) for k in range(n//2))
[A046736(n) for n in range(2, 41)] # G. C. Greubel, Jul 31 2024
CROSSREFS
Cf. A001003 (Schroeder), A001006 (Motzkin), A000108 (Catalan), A052524.
Sequence in context: A297458 A328038 A107840 * A174171 A262042 A227644
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved