OFFSET
2,2
COMMENTS
Many rows and columns in the table appear to be given by a quadratic in even and odd values of k and n; see the Formula section. The exceptions are for rows with n mod 6 = 0 for even k, and for columns with even k, formulas for which are unknown.
LINKS
Scott R. Shannon, Table for n=2..35, k=1..50.
Scott R. Shannon, Image for T(2,8) = 64.
Scott R. Shannon, Image for T(3,6) = 126.
Scott R. Shannon, Image for T(3,7) = 211.
Scott R. Shannon, Image for T(4,8) = 480.
Scott R. Shannon, Image for T(4,9) = 633.
Scott R. Shannon, Image for T(6,12) = 2232.
Scott R. Shannon, Image for T(6,13) = 3013.
Scott R. Shannon, Image for T(10,10) = 5100.
Scott R. Shannon, Image for T(10,11) = 6581.
Scott R. Shannon, Image for T(18,1) = 613.
Scott R. Shannon, Image for T(18,2) = 972.
Scott R. Shannon, Image for T(18,3) = 2485.
Scott R. Shannon, Image for T(18,4) = 3096.
Scott R. Shannon, Image for T(18,5) = 5581.
Scott R. Shannon, Image for T(18,6) = 6444.
FORMULA
T(2,k) = k^2.
Conjectured formula for the rows for odd values of k for n>=3:
Conjectured formula for the rows for even values of k for n>=3:
For n mod 3 = 1 or n mod 3 = 2, T(n,k) = A000217(n-1)*k^2 + A265225(n-1)*k = (n^2 - n)*k^2/2 + (floor(n/2) + 1)*n*k.
For n mod 6 = 0, no formula is currently known.
For (n - 3) mod 6 = 0, T(n,k) = A000096(2n-3)*k^2/4 + A005563(n)*k/2 = (2n^2 - 3n)*k^2/4 + (n^2 + 2n)*k/2.
E.g., T(15,k) = 405k^2/4 + 255k/2.
Conjectured formula for the columns for odd values of k for n>=3:
E.g., T(n,9) = 50n^2 - 42n + 1.
Conjectured formula for T(n,2):
T(n,2) = 2*A249127(n) = 2*floor(3n/2)*n, for n>=3.
No formula is current known for the columns for even values of k for k>=4.
EXAMPLE
The table begins:
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, ...
13, 24, 55, 66, 121, 126, 211, 204, 325, 300, 463, 414, ...
25, 48, 105, 144, 233, 288, 409, 480, 633, 720, 905, 1008, ...
41, 70, 171, 220, 381, 450, 671, 760, 1041, 1150, 1491, 1620, ...
61, 108, 253, 312, 565, 636, 997, 1056, 1549, 1596, 2221, 2232, ...
85, 140, 351, 448, 785, 924, 1387, 1568, 2157, 2380, 3095, 3360, ...
113, 192, 465, 608, 1041, 1248, 1841, 2112, 2865, 3200, 4113, 4512, ...
145, 234, 595, 738, 1333, 1512, 2359, 2556, 3673, 3870, 5275, 5454, ...
181, 300, 741, 960, 1661, 1980, 2941, 3360, 4581, 5100, 6581, 7200, ...
221, 352, 903, 1144, 2025, 2376, 3587, 4048, 5589, 6160, 8031, 8712, ...
265, 432, 1081, 1344, 2425, 2784, 4297, 4704, 6697, 7152, 9625, 10080, ...
313, 494, 1275, 1612, 2861, 3354, 5071, 5720, 7905, 8710, 11363, 12324, ...
365, 588, 1485, 1904, 3333, 3948, 5909, 6720, 9213, 10220, 13245, 14448, ...
421, 660, 1711, 2130, 3841, 4410, 6811, 7500, 10621, 11400, 15271, 16110, ...
481, 768, 1953, 2496, 4385, 5184, 7777, 8832, 12129, 13440, 17441, 19008, ...
545, 850, 2211, 2788, 4965, 5814, 8807, 9928, 13737, 15130, 19755, 21420, ...
613, 972, 2485, 3096, 5581, 6444, 9901, 10944, 15445, 16668, 22213, 23544, ...
.
.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Scott R. Shannon, Aug 28 2022
STATUS
approved