login
A037027
Skew Fibonacci-Pascal triangle read by rows.
52
1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 5, 10, 9, 4, 1, 8, 20, 22, 14, 5, 1, 13, 38, 51, 40, 20, 6, 1, 21, 71, 111, 105, 65, 27, 7, 1, 34, 130, 233, 256, 190, 98, 35, 8, 1, 55, 235, 474, 594, 511, 315, 140, 44, 9, 1, 89, 420, 942, 1324, 1295, 924, 490, 192, 54, 10, 1, 144, 744, 1836
OFFSET
0,4
COMMENTS
T(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (0,1), (1,0), (2,0). - Joerg Arndt, Jun 30 2011
T(n,k) is the number of lattice paths of length n, starting from the origin and ending at (n,k), using horizontal steps H=(1,0), up steps U=(1,1) and down steps D=(1,-1), never containing UUU, DD, HD. For instance, for n=4 and k=2, we have the paths; HHUU, HUHU, HUUH, UHHU, UHUH, UUHH, UUDU, UDUU, UUUD. - Emanuele Munarini, Mar 15 2011
Row sums form Pell numbers A000129, T(n,0) forms Fibonacci numbers A000045, T(n,1) forms A001629. T(n+k,n-k) is polynomial sequence of degree k.
T(n,k) gives a convolved Fibonacci sequence (A001629, A001872, etc.).
As a Riordan array, this is (1/(1-x-x^2),x/(1-x-x^2)). An interesting factorization is (1/(1-x^2),x/(1-x^2))*(1/(1-x),x/(1-x)) [abs(A049310) times A007318]. Diagonal sums are the Jacobsthal numbers A001045(n+1). - Paul Barry, Jul 28 2005
T(n,k) = T'(n+1,k+1), T' given by [0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 19 2005
Equals A049310 * A007318 as infinite lower triangular matrices. - Gary W. Adamson, Oct 28 2007
This triangle may also be obtained from the coefficients of the Morgan-Voyce polynomials defined by: Mv(x, n) = (x + 1)*Mv(x, n - 1) + Mv(x, n - 2). - Roger L. Bagula, Apr 09 2008
Row sums are A000129. - Roger L. Bagula, Apr 09 2008
Absolute value of coefficients of the characteristic polynomial of tridiagonal matrices with 1's along the main diagonal, and i's along the superdiagonal and the subdiagonal (where i=sqrt(-1), see Mathematica program). - John M. Campbell, Aug 23 2011
A037027 is jointly generated with A122075 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+(x+1)*v(n-1)x and v(n,x)=u(n-1,x)+x*v(n-1,x). See the Mathematica section at A122075. - Clark Kimberling, Mar 05 2012
For a closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 18 2013
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013
Row n, for n>=0, shows the coefficients of the polynomial u(n) = c(0) + c(1)*x + ... + c(n)*x^n which is the denominator of the n-th convergent of the continued fraction [x+1, x+1, x+1, ...]; see A230000. - Clark Kimberling, Nov 13 2013
T(n,k) is the number of ternary words of length n having k letters 2 and avoiding a runs of odd length for the letter 0. - Milan Janjic, Jan 14 2017
Let T(m, n, k) be an m-bonacci Pascal's triangle, where T(m, n, 0) gives the values of F(m, n), the n-th m-bonacci number, and T(m, n, k) gives the values for the k-th convolution of F(m, n). Then the classic Pascal triangle is T(1, n, k) and this sequence is T(2, n, k). T(m, n, k) is the number of compositions of n using only the positive integers 1, 1' and 2 through m, with the part 1' used exactly k times. G.f. for k-th column of T(m, n, k): x/(1 - x - x^2 - ... - x^m)^k. The row sum for T(m, n, k) is the number of compositions of n using only the positive integers 1, 1' and 2 through m. G.f. for row sum of T(m, n, k): 1/(1 - 2x - x^2 - ... - x^m). - Gregory L. Simay, Jul 24 2021
LINKS
Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
T. Mansour, Generalization of some identities involving the Fibonacci numbers, arXiv:math/0301157 [math.CO], 2003.
P. Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO], 2003.
Yidong Sun, Numerical Triangles and Several Classical Sequences, Fib. Quart. 43, no. 4, Nov. 2005, pp. 359-370.
Eric Weisstein's World of Mathematics, Morgan-Voyce Polynomials.
FORMULA
T(n, m) = T'(n-1, m) + T'(n-2, m) + T'(n-1, m-1), where T'(n, m) = T(n, m) for n >= 0 and 0< = m <= n and T'(n, m) = 0 otherwise.
G.f.: 1/(1 - y - y*z - y^2).
G.f. for k-th column: x/(1-x-x^2)^k.
T(n, m) = Sum_{k=0..n-m} binomial(m+k, m)*binomial(k, n-k-m), n >= m >= 0, otherwise 0. - Wolfdieter Lang, Jun 17 2002
T(n, m) = ((n-m+1)*T(n, m-1) + 2*(n+m)*T(n-1, m-1))/(5*m), n >= m >= 1; T(n, 0)= A000045(n+1); T(n, m)= 0 if n < m. - Wolfdieter Lang, Apr 12 2000
Chebyshev coefficient triangle (abs(A049310)) times Pascal's triangle (A007318) as product of lower triangular matrices. T(n, k) = Sum_{j=0..n} binomial((n+j)/2, j)*(1+(-1)^(n+j))*binomial(j, k)/2. - Paul Barry, Dec 22 2004
Let R(n) = n-th row polynomial in x, with R(0)=1, then R(n+1)/R(n) equals the continued fraction [1+x;1+x, ...(1+x) occurring (n+1) times ..., 1+x] for n >= 0. - Paul D. Hanna, Feb 27 2004
T(n,k) = Sum_{j=0..n} binomial(n-j,j)*binomial(n-2*j,k); in Egorychev notation, T(n,k) = res_w(1-w-w^2)^(-k-1)*w^(-n+k+1). - Paul Barry, Sep 13 2006
Sum_{k=0..n} T(n,k)*x^k = A000045(n+1), A000129(n+1), A006190(n+1), A001076(n+1), A052918(n), A005668(n+1), A054413(n), A041025(n), A099371(n+1), A041041(n), A049666(n+1), A041061(n), A140455(n+1), A041085(n), A154597(n+1), A041113(n) for x = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 respectively. - Philippe Deléham, Nov 29 2009
T((m+1)*n+r-1, m*n+r-1)*r/(m*n+r) = Sum_{k=1..n} k/n*T((m+1)*n-k-1, m*n-1)*(r+k,r), n >= m > 1.
T(n-1,m-1) = (m/n)*Sum_{k=1..n-m+1} k*A000045(k)*T(n-k-1,m-2),k,1,n-m+1), n >= m > 1. - Vladimir Kruchinin, Mar 17 2011
T(n,k) = binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -4) for n >= 1. - Peter Luschny, Apr 25 2016
EXAMPLE
Ratio of row polynomials R(3)/R(2) = (3 + 5*x + 3*x^2 + x^3)/(2 + 2*x + x^2) = [1+x; 1+x, 1+x].
Triangle begins:
1;
1, 1;
2, 2, 1;
3, 5, 3, 1;
5, 10, 9, 4, 1;
8, 20, 22, 14, 5, 1;
13, 38, 51, 40, 20, 6, 1;
21, 71, 111, 105, 65, 27, 7, 1;
34, 130, 233, 256, 190, 98, 35, 8, 1;
55, 235, 474, 594, 511, 315, 140, 44, 9, 1;
89, 420, 942, 1324, 1295, 924, 490, 192, 54, 10, 1;
MAPLE
T := (n, k) -> `if`(n=0, 1, binomial(n, k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -4)): seq(seq(simplify(T(n, k)), k=0..n), n=0..10); # Peter Luschny, Apr 25 2016
# Uses function PMatrix from A357368. Adds a row above and a column to the left.
PMatrix(10, n -> combinat:-fibonacci(n)); # Peter Luschny, Oct 07 2022
MATHEMATICA
Mv[x, -1] = 0; Mv[x, 0] = 1; Mv[x, 1] = 1 + x; Mv[x_, n_] := Mv[x, n] = ExpandAll[(x + 1)*Mv[x, n - 1] + Mv[x, n - 2]]; Table[ CoefficientList[ Mv[x, n], x], {n, 0, 10}] // Flatten (* Roger L. Bagula, Apr 09 2008 *)
Abs[Flatten[Table[CoefficientList[CharacteristicPolynomial[Array[KroneckerDelta[#1, #2]+KroneckerDelta[#1, #2+1]*I+KroneckerDelta[#1, #2-1]*I&, {n, n}], x], x], {n, 1, 20}]]] (* John M. Campbell, Aug 23 2011 *)
T[n_, k_] := Binomial[n, k] Hypergeometric2F1[(k-n)/2, (k-n+1)/2, -n, -4];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 16 2019, after Peter Luschny *)
PROG
(PARI) {T(n, k) = if( k<0 || k>n, 0, if( n==0 && k==0, 1, T(n-1, k) + T(n-1, k-1) + T(n-2, k)))}; /* Michael Somos, Sep 29 2003 */
(PARI) T(n, k)=if(n<k||k<0, 0, polcoeff(contfracpnqn(vector(n, i, 1+x))[1, 1], k, x)) \\ Paul D. Hanna, Feb 27 2004
(Haskell)
a037027 n k = a037027_tabl !! n !! k
a037027_row n = a037027_tabl !! n
a037027_tabl = [1] : [1, 1] : f [1] [1, 1] where
f xs ys = ys' : f ys ys' where
ys' = zipWith3 (\u v w -> u + v + w) (ys ++ [0]) (xs ++ [0, 0]) ([0] ++ ys)
-- Reinhard Zumkeller, Jul 07 2012
CROSSREFS
A038112(n) = T(2n, n). A038137 is reflected version. Maximal row entries: A038149.
Diagonal differences are in A055830. Vertical sums are in A091186.
Some other Fibonacci-Pascal triangles: A027926, A036355, A074829, A105809, A109906, A111006, A114197, A162741, A228074.
Sequence in context: A292630 A144287 A106196 * A182810 A139375 A106198
KEYWORD
easy,nonn,tabl
AUTHOR
Floor van Lamoen, Jan 01 1999
EXTENSIONS
Examples from Paul D. Hanna, Feb 27 2004
STATUS
approved