OFFSET
0,5
COMMENTS
A(n,k) is the k-th binomial transform of A001405 evaluated at n.
LINKS
N. J. A. Sloane, Transforms
FORMULA
E.g.f. of column k: exp(k*x)*(BesselI(0,2*x) + BesselI(1,2*x)).
EXAMPLE
E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (k^2 + 2*k + 2)*x^2/2! + (k^3 + 3*k^2 + 6*k + 3)*x^3/3! + (k^4 + 4*k^3 + 12*k^2 + 12*k + 6)*x^4/4! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
2, 5, 10, 17, 26, 37, ...
3, 13, 35, 75, 139, 233, ...
6, 35, 126, 339, 758, 1491, ...
10, 96, 462, 1558, 4194, 9660, ...
MAPLE
[seq(seq((k)!*add((m-j)^(j-i)/floor(i/2)!/ceil(i/2)!/(j-i)!, i=0..j), j=0..m), m=0..20)]; # Robert Israel, Sep 20 2017
MATHEMATICA
Table[Function[k, n! SeriesCoefficient[Exp[k x] (BesselI[0, 2 x] + BesselI[1, 2 x]), {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Sep 20 2017
STATUS
approved